《2019-2020年高三數(shù)學大一輪復習 4.3三角函數(shù)的圖象與性質(zhì)教案 理 新人教A版 .DOC》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學大一輪復習 4.3三角函數(shù)的圖象與性質(zhì)教案 理 新人教A版 .DOC(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學大一輪復習 4.3三角函數(shù)的圖象與性質(zhì)教案 理 新人教A版
xx高考會這樣考 1.考查三角函數(shù)的圖象:五點法作簡圖、圖象變換、圖象的解析式;2.考查三角函數(shù)的性質(zhì):值域或最值,單調(diào)區(qū)間、對稱性等;3.考查數(shù)形結(jié)合思想.
復習備考要這樣做 1.會作三角函數(shù)的圖象,通過圖象研究三角函數(shù)性質(zhì);2.對三角函數(shù)進行恒等變形,然后討論圖象、性質(zhì);3.注重函數(shù)與方程、轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學思想方法的應用.
1. “五點法”作圖原理
在確定正弦函數(shù)y=sin x在[0,2π]上的圖象形狀時,起關(guān)鍵作用的五個點是(0,0)、、(π,0)、、(2π,0).余弦函數(shù)呢?
2. 三角函數(shù)的圖象和性質(zhì)
函數(shù)
性質(zhì)
y=sin x
y=cos x
y=tan x
定義域
R
R
{x|x≠kπ+,k∈Z}
圖象
值域
[-1,1]
[-1,1]
R
對稱性
對稱軸:x=kπ+(k∈Z);對稱中心:(kπ,0)(k∈Z)
對稱軸:x=kπ(k∈Z);對稱中心:(kπ+,0) (k∈Z)
對稱中心:(k∈Z)
周期
2π
2π
π
單調(diào)性
單調(diào)增區(qū)間[2kπ-,2kπ+](k∈Z);
單調(diào)減區(qū)間[2kπ+,2kπ+] (k∈Z)
單調(diào)增區(qū)間[2kπ-π,2kπ] (k∈Z);
單調(diào)減區(qū)間[2kπ,2kπ+π](k∈Z)
單調(diào)增區(qū)間(kπ-,kπ+)(k∈Z)
奇偶性
奇函數(shù)
偶函數(shù)
奇函數(shù)
[難點正本 疑點清源]
1. 函數(shù)的周期性
若f(ωx+φ+T)=f(ωx+φ) (ω>0),常數(shù)T不能說是函數(shù)f(ωx+φ)的周期.因為f(ωx+φ+T)=f,即自變量由x增加到x+,是函數(shù)的周期.
2. 求三角函數(shù)值域(最值)的方法
(1)利用sin x、cos x的有界性;
(2)形式復雜的函數(shù)應化為y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范圍,根據(jù)正弦函數(shù)的單調(diào)性寫出函數(shù)的值域;
(3)換元法:把sin x或cos x看作一個整體,可化為求函數(shù)在區(qū)間上的值域(最值)問題.
1. 設(shè)點P是函數(shù)f(x)=sin ωx (ω≠0)的圖象C的一個對稱中心,若點P到圖象C的對稱軸的距離的最小值是,則f(x)的最小正周期是________.
答案 π
解析 由正弦函數(shù)的圖象知對稱中心與對稱軸的距離的最小值為最小正周期的,故f(x)的最小正周期為T=4=π.
2. 函數(shù)y=2-3cos的最大值為______,此時x=______________.
答案 5 π+2kπ,k∈Z
解析 當cos=-1時,函數(shù)y=2-3cos取得最大值5,此時x+=π+2kπ (k∈Z),從而x=π+2kπ,k∈Z.
3. (xx福建)函數(shù)f(x)=sin的圖象的一條對稱軸是 ( )
A.x= B.x= C.x=- D.x=-
答案 C
解析 方法一 ∵正弦函數(shù)圖象的對稱軸過圖象的最高點或最低點,
故令x-=kπ+,k∈Z,∴x=kπ+,k∈Z.
取k=-1,則x=-.
方法二 用驗證法.
x=時,y=sin=0,不合題意,排除A;
x=時,y=sin=,不合題意,排除B;
x=-時,y=sin=-1,符合題意,C項正確;
x=-時,y=sin=-,不合題意,故D項也不正確.
4.函數(shù)y=tan的定義域為( )
A.{x|x≠kπ-,k∈Z} B.{x|x≠2kπ-,k∈Z}
C.{x|x≠kπ+,k∈Z} D.{x|x≠2kπ+,k∈Z}
答案 A
解析 令-x≠kπ+,k∈Z,
∴x≠kπ-,k∈Z.
5. 給出下列四個命題,其中不正確的命題為 ( )
①若cos α=cos β,則α-β=2kπ,k∈Z;
②函數(shù)y=2cos的圖象關(guān)于x=對稱;
③函數(shù)y=cos(sin x)(x∈R)為偶函數(shù);
④函數(shù)y=sin|x|是周期函數(shù),且周期為2π.
A.①② B.①④
C.①②③ D.①②④
答案 D
解析 命題①:若α=-β,則cos α=cos β,假命題;命題②:x=,cos=cos =0,故x=不是y=2cos的對稱軸;命題④:函數(shù)y=sin|x|不是周期函數(shù).
題型一 三角函數(shù)的定義域、值域問題
例1 (1)求函數(shù)y=lg sin 2x+的定義域;
(2)求函數(shù)y=cos2x+sin x 的最大值與最小值.
思維啟迪:求函數(shù)的定義域可利用三角函數(shù)的圖象或數(shù)軸;求函數(shù)值域時要利用正弦函數(shù)的值域或化為二次函數(shù).
解 (1)由,
得
∴-3≤x<-或0
0)的函數(shù)的單調(diào)區(qū)間,可以通過解不等式的方法去解答.列不等式的原則:①把“ωx+φ (ω>0)”視為一個“整體”;②A>0 (A<0)時,所列不等式的方向與y=sin x(x∈R),y=cos x(x∈R)的單調(diào)區(qū)間對應的不等式方向相同(反).
(2)對于y=Atan(ωx+φ) (A、ω、φ為常數(shù)),其周期T=,單調(diào)區(qū)間利用ωx+φ∈,解出x的取值范圍,即為其單調(diào)區(qū)間.對于復合函數(shù)y=f(v),v=φ(x),其單調(diào)性的判定方法:若y=f(v)和v=φ(x)同為增(減)函數(shù)時,y=f(φ(x))為增函數(shù);若y=f(v)和v=φ(x)一增一減時,y=f(φ(x))為減函數(shù).
(3)求含有絕對值的三角函數(shù)的單調(diào)性及周期時,通常要畫出圖象,結(jié)合圖象判定.
求函數(shù)y=sin+cos的周期、單調(diào)區(qū)間及最大、最小值.
解 ∵+=,
∴cos=cos
=cos=sin.
∴y=2sin,周期T==.
當-+2kπ≤4x+≤+2kπ (k∈Z)時,函數(shù)單調(diào)遞增,
∴函數(shù)的遞增區(qū)間為 (k∈Z).
當+2kπ≤4x+≤+2kπ (k∈Z)時,函數(shù)單調(diào)遞減,
∴函數(shù)的遞減區(qū)間為(k∈Z).
當x=+ (k∈Z)時,ymax=2;
當x=-+ (k∈Z)時,ymin=-2.
題型三 三角函數(shù)的對稱性與奇偶性
例3 (1)已知f(x)=sin x+cos x(x∈R),函數(shù)y=f(x+φ) 的圖象關(guān)于直線x=0對稱,則φ的值為________.
(2)如果函數(shù)y=3cos(2x+φ)的圖象關(guān)于點中心對稱,那么|φ|的最小值為( )
A. B. C. D.
答案 (1) (2)A
解析 (1)f(x)=2sin,
y=f(x+φ)=2sin圖象關(guān)于x=0對稱,
即f(x+φ)為偶函數(shù).
∴+φ=+kπ,k∈Z,φ=kπ+,k∈Z,
又∵|φ|≤,∴φ=.
(2)由題意得3cos=3cos
=3cos=0,
∴+φ=kπ+,k∈Z,∴φ=kπ-,k∈Z,
取k=0,得|φ|的最小值為.故選A.
探究提高 若f(x)=Asin(ωx+φ)為偶函數(shù),則當x=0時,f(x)取得最大值或最小值.
若f(x)=Asin(ωx+φ)為奇函數(shù),則當x=0時,f(x)=0.
如果求f(x)的對稱軸,只需令ωx+φ=+kπ (k∈Z),求x.
如果求f(x)的對稱中心的橫坐標,只需令ωx+φ=kπ (k∈Z)即可.
(1)定義運算=ad-bc,則函數(shù)f(x)=的圖象的一條對稱軸方程是 ( )
A.x= B.x=
C.x= D.x=
(2)若函數(shù)f(x)=asin ωx+bcos ωx (0<ω<5,ab≠0)的圖象的一條對稱軸方程是x=,函數(shù)f′(x)的圖象的一個對稱中心是,則f(x)的最小正周期是________.
答案 (1)A (2)π
解析 (1)f(x)==3cos x-sin x
=2cos.
所以當x=時,f(x)=2cos=-2.
(2)由題設(shè),有f=,
即(a+b)=,由此得到a=b.
又f′=0,∴aω=0,
從而tan =1,=kπ+,k∈Z,
即ω=8k+2,k∈Z,而0<ω<5,∴ω=2,
于是f(x)=a(sin 2x+cos 2x)=asin,
故f(x)的最小正周期是π.
方程思想在三角函數(shù)中的應用
典例:(12分)已知函數(shù)f(x)=2asin+b的定義域為,函數(shù)的最大值為1,最小值為-5,求a和b的值.
審題視角 (1)求出2x-的范圍,求出sin的值域.(2)系數(shù)a的正、負影響著f(x)的值,因而要分a>0,a<0兩種情況討論.(3)根據(jù)a>0或a<0求f(x)的最值,列方程組求解.
規(guī)范解答
解 ∵0≤x≤,∴-≤2x-≤π,
∴-≤sin≤1,[3分]
若a>0,則,
解得;[7分]
若a<0,則,
解得.[11分]
綜上可知,a=12-6,b=-23+12或a=-12+6,
b=19-12.[12分]
溫馨提醒 (1)對此類問題的解決,首先利用正弦函數(shù)、余弦函數(shù)的有界性或單調(diào)性求出y=Aasin(ωx+φ)或y=Aacos(ωx+φ)的最值,但要注意對a的正負進行討論,以便確定是最大值還是最小值.(2)再由已知列方程求解.(3)本題的易錯點是忽視對參數(shù)a>0或a<0的分類討論,導致漏解.
方法與技巧
1.利用函數(shù)的有界性(-1≤sin x≤1,-1≤cos x≤1),求三角函數(shù)的值域(最值).
2.利用函數(shù)的單調(diào)性求函數(shù)的值域或最值.
3.利用換元法求復合函數(shù)的單調(diào)區(qū)間(要注意x系數(shù)的正負號).
失誤與防范
1.閉區(qū)間上最值或值域問題,首先要在定義域基礎(chǔ)上分析單調(diào)性,含參數(shù)的最值問題,要討論參數(shù)對最值的影響.
2.求三角函數(shù)的單調(diào)區(qū)間時,應先把函數(shù)式化成形如y=Asin(ωx+φ) (ω>0)的形式,再根據(jù)基本三角函數(shù)的單調(diào)區(qū)間,求出x所在的區(qū)間.應特別注意,考慮問題應在函數(shù)的定義域內(nèi)考慮.注意區(qū)分下列兩題的單調(diào)增區(qū)間的不同:
(1)y=sin;(2)y=sin.
3.利用換元法求三角函數(shù)最值時注意三角函數(shù)的有界性,如:y=sin2x-4sin x+5,令t=sin x(|t|≤1),則y=(t-2)2+1≥1,解法錯誤.
A組 專項基礎(chǔ)訓練
(時間:35分鐘,滿分:57分)
一、選擇題(每小題5分,共20分)
1. 函數(shù)y=的定義域為 ( )
A.
B.,k∈Z
C.,k∈Z
D.R
答案 C
解析 由題意得cos x≥,
即2kπ-≤x≤2kπ+,k∈Z,
故函數(shù)定義域為,k∈Z.
2. y=sin的圖象的一個對稱中心是 ( )
A.(-π,0) B.
C. D.
答案 B
解析 ∵y=sin x的對稱中心為(kπ,0) (k∈Z),
∴令x-=kπ (k∈Z),x=kπ+ (k∈Z),
由k=-1,x=-得y=sin的一個對稱中心是.
3. (xx山東)若函數(shù)f(x)=sin ωx (ω>0)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則ω等于 ( )
A. B. C.2 D.3
答案 B
解析 ∵f(x)=sin ωx(ω>0)過原點,
∴當0≤ωx≤,即0≤x≤時,y=sin ωx是增函數(shù);
當≤ωx≤,即≤x≤時,y=sin ωx是減函數(shù).
由f(x)=sin ωx (ω>0)在上單調(diào)遞增,
在上單調(diào)遞減知,=,∴ω=.
4. 函數(shù)f(x)=cos 2x+sin是 ( )
A.非奇非偶函數(shù)
B.僅有最小值的奇函數(shù)
C.僅有最大值的偶函數(shù)
D.有最大值又有最小值的偶函數(shù)
答案 D
解析 f(x)=cos 2x+sin=2cos2x-1+cos x=22-.顯然有最大值又有最小值,而且在R上有f(-x)=f(x),所以正確答案為D.
二、填空題(每小題5分,共15分)
5. 函數(shù)y=lg(sin x)+的定義域為____________________.
答案 (k∈Z)
解析 要使函數(shù)有意義必須有,
即,解得(k∈Z),
∴2kπ0)和g(x)=2cos(2x+φ)+1的圖象的對稱軸完全相同.若x∈[0,],則f(x)的取值范圍是________.
答案 [-,3]
解析 由對稱軸完全相同知兩函數(shù)周期相同,
∴ω=2,∴f(x)=3sin(2x-).
由x∈[0,],得-≤2x-≤π,
∴-≤f(x)≤3.
7. 函數(shù)f(x)=2sin ωx(ω>0)在上單調(diào)遞增,且在這個區(qū)間上的最大值是,那么ω=________.
答案
解析 因為f(x)=2sin ωx (ω>0)在上單調(diào)遞增,且在這個區(qū)間上的最大值是,所以2sin ω=,且0<ω<,因此ω=.
三、解答題(共22分)
8. (10分)設(shè)函數(shù)f(x)=sin (-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=.
(1)求φ;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間.
解 (1)令2+φ=kπ+,k∈Z,
∴φ=kπ+,k∈Z,
又-π<φ<0,則-0)的圖象向右平移個單位長度,所得圖象經(jīng)過點,則ω的最小值是 ( )
A. B.1 C. D.2
答案 D
解析 根據(jù)題意平移后函數(shù)的解析式為y=sin ω,
將代入得sin =0,則ω=2k,k∈Z,且ω>0,
故ω的最小值為2.
2. (xx上海)若Sn=sin +sin +…+sin (n∈N*),則在S1,S2,…,S100中,正數(shù)的個數(shù)是 ( )
A.16 B.72 C.86 D.100
答案 C
解析 易知S1>0,S2>0,S3>0,S4>0,S5>0,S6>0,S7>0.
S8=sin +sin +…+sin +sin
=sin +sin +…+sin >0,
S9=sin +sin +…+sin >0,
S10=sin +…+sin >0,
S11=sin +sin +sin >0,
S12=sin +sin >0,
S13=sin =0,
S14=sin +sin =0,
∴S1,S2,…,S100中,
S13=0,S14=0,S27=0,S28=0,S41=0,S42=0,S55=0,
S56=0,S69=0,S70=0,S83=0,S84=0,S97=0,S98=0,共14個.
∴在S1,S2,…,S100中,正數(shù)的個數(shù)是100-14=86(個).
3. 已知函數(shù)f(x)=2sin ωx(ω>0)在區(qū)間上的最小值是-2,則ω的最小值等于( )
A. B. C.2 D.3
答案 B
解析 ∵f(x)=2sin ωx (ω>0)的最小值是-2,
∴x=-,k∈Z,∴-≤-≤,k∈Z,
∴ω≥-6k+且ω≥8k-2,k∈Z,∴ωmin=,故選B.
二、填空題(每小題5分,共15分)
4. 函數(shù)y=2sin(3x+φ) (|φ|<)的一條對稱軸為x=,則φ=________.
答案
解析 由題意得3+φ=kπ+,k∈Z,
∴φ=kπ+,k∈Z,又|φ|<,∴φ=.
5. 函數(shù)y= (0cos x時,f(x)=sin x.
給出以下結(jié)論:
①f(x)是周期函數(shù);
②f(x)的最小值為-1;
③當且僅當x=2kπ (k∈Z)時,f(x)取得最小值;
④當且僅當2kπ-0;
⑤f(x)的圖象上相鄰兩個最低點的距離是2π.
其中正確的結(jié)論序號是________.
答案?、佗堍?
解析 易知函數(shù)f(x)是周期為2π的周期函數(shù).
函數(shù)f(x)在一個周期內(nèi)的圖象如圖所示.
由圖象可得,f(x)的最小值為-,當且僅當x=2kπ+ (k∈Z)時,f(x)取得最小值;當且僅當2kπ-0;f(x)的圖象上相鄰兩個最低點的距離是2π.所以正確的結(jié)論的序號是①④⑤.
三、解答題
7. (13分)已知a>0,函數(shù)f(x)=-2asin+2a+b,當x∈時,-5≤f(x)≤1.
(1)求常數(shù)a,b的值;
(2)設(shè)g(x)=f且lg g(x)>0,求g(x)的單調(diào)區(qū)間.
解 (1)∵x∈,∴2x+∈.
∴sin∈,
∴-2asin∈[-2a,a].
∴f(x)∈[b,3a+b],又∵-5≤f(x)≤1,
∴b=-5,3a+b=1,因此a=2,b=-5.
(2)由(1)得,f(x)=-4sin-1,
g(x)=f=-4sin-1
=4sin-1,
又由lg g(x)>0,得g(x)>1,
∴4sin-1>1,∴sin>,
∴2kπ+<2x+<2kπ+,k∈Z,
其中當2kπ+<2x+≤2kπ+,k∈Z時,g(x)單調(diào)遞增,即kπ
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019-2020年高三數(shù)學大一輪復習
4.3三角函數(shù)的圖象與性質(zhì)教案
新人教A版
2019
2020
年高
數(shù)學
一輪
復習
4.3
三角函數(shù)
圖象
性質(zhì)
教案
新人
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.hcyjhs8.com/p-2610856.html