2019-2020年高中數(shù)學(xué) 隨機(jī)變量及其分布列 版塊二 幾類(lèi)典型的隨機(jī)分布1完整講義(學(xué)生版).doc
《2019-2020年高中數(shù)學(xué) 隨機(jī)變量及其分布列 版塊二 幾類(lèi)典型的隨機(jī)分布1完整講義(學(xué)生版).doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 隨機(jī)變量及其分布列 版塊二 幾類(lèi)典型的隨機(jī)分布1完整講義(學(xué)生版).doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 隨機(jī)變量及其分布列 版塊二 幾類(lèi)典型的隨機(jī)分布1完整講義(學(xué)生版) 知識(shí)內(nèi)容 1. 離散型隨機(jī)變量及其分布列 ⑴離散型隨機(jī)變量 如果在試驗(yàn)中,試驗(yàn)可能出現(xiàn)的結(jié)果可以用一個(gè)變量來(lái)表示,并且是隨著試驗(yàn)的結(jié)果的不同而變化的,我們把這樣的變量叫做一個(gè)隨機(jī)變量.隨機(jī)變量常用大寫(xiě)字母表示. 如果隨機(jī)變量的所有可能的取值都能一一列舉出來(lái),則稱(chēng)為離散型隨機(jī)變量. ⑵離散型隨機(jī)變量的分布列 將離散型隨機(jī)變量所有可能的取值與該取值對(duì)應(yīng)的概率列表表示: … … … … 我們稱(chēng)這個(gè)表為離散型隨機(jī)變量的概率分布,或稱(chēng)為離散型隨機(jī)變量的分布列. 2.幾類(lèi)典型的隨機(jī)分布 ⑴兩點(diǎn)分布 如果隨機(jī)變量的分布列為 其中,,則稱(chēng)離散型隨機(jī)變量服從參數(shù)為的二點(diǎn)分布. 二點(diǎn)分布舉例:某次抽查活動(dòng)中,一件產(chǎn)品合格記為,不合格記為,已知產(chǎn)品的合格率為,隨機(jī)變量為任意抽取一件產(chǎn)品得到的結(jié)果,則的分布列滿(mǎn)足二點(diǎn)分布. 兩點(diǎn)分布又稱(chēng)分布,由于只有兩個(gè)可能結(jié)果的隨機(jī)試驗(yàn)叫做伯努利試驗(yàn),所以這種分布又稱(chēng)為伯努利分布. ⑵超幾何分布 一般地,設(shè)有總數(shù)為件的兩類(lèi)物品,其中一類(lèi)有件,從所有物品中任取件,這件中所含這類(lèi)物品件數(shù)是一個(gè)離散型隨機(jī)變量,它取值為時(shí)的概率為 ,為和中較小的一個(gè). 我們稱(chēng)離散型隨機(jī)變量的這種形式的概率分布為超幾何分布,也稱(chēng)服從參數(shù)為,,的超幾何分布.在超幾何分布中,只要知道,和,就可以根據(jù)公式求出取不同值時(shí)的概率,從而列出的分布列. ⑶二項(xiàng)分布 1.獨(dú)立重復(fù)試驗(yàn) 如果每次試驗(yàn),只考慮有兩個(gè)可能的結(jié)果及,并且事件發(fā)生的概率相同.在相同的條件下,重復(fù)地做次試驗(yàn),各次試驗(yàn)的結(jié)果相互獨(dú)立,那么一般就稱(chēng)它們?yōu)榇为?dú)立重復(fù)試驗(yàn).次獨(dú)立重復(fù)試驗(yàn)中,事件恰好發(fā)生次的概率為. 2.二項(xiàng)分布 若將事件發(fā)生的次數(shù)設(shè)為,事件不發(fā)生的概率為,那么在次獨(dú)立重復(fù)試驗(yàn)中,事件恰好發(fā)生次的概率是,其中.于是得到的分布列 … … … … 由于表中的第二行恰好是二項(xiàng)展開(kāi)式 各對(duì)應(yīng)項(xiàng)的值,所以稱(chēng)這樣的散型隨機(jī)變量服從參數(shù)為,的二項(xiàng)分布, 記作. 二項(xiàng)分布的均值與方差: 若離散型隨機(jī)變量服從參數(shù)為和的二項(xiàng)分布,則 ,. ⑷正態(tài)分布 1. 概率密度曲線(xiàn):樣本數(shù)據(jù)的頻率分布直方圖,在樣本容量越來(lái)越大時(shí), 直方圖上面的折線(xiàn)所接近的曲線(xiàn).在隨機(jī)變量中,如果把樣本中的任一數(shù)據(jù)看作隨機(jī)變量,則這條曲線(xiàn)稱(chēng)為的概率密度曲線(xiàn). 曲線(xiàn)位于橫軸的上方,它與橫軸一起所圍成的面積是,而隨機(jī)變量落在指定的兩個(gè)數(shù)之間的概率就是對(duì)應(yīng)的曲邊梯形的面積. 2.正態(tài)分布 ⑴定義:如果隨機(jī)現(xiàn)象是由一些互相獨(dú)立的偶然因素所引起的,而且每一個(gè)偶然因素在總體的變化中都只是起著均勻、微小的作用,則表示這樣的隨機(jī)現(xiàn)象的隨機(jī)變量的概率分布近似服從正態(tài)分布. 服從正態(tài)分布的隨機(jī)變量叫做正態(tài)隨機(jī)變量,簡(jiǎn)稱(chēng)正態(tài)變量. 正態(tài)變量概率密度曲線(xiàn)的函數(shù)表達(dá)式為,,其中,是參數(shù),且,. 式中的參數(shù)和分別為正態(tài)變量的數(shù)學(xué)期望和標(biāo)準(zhǔn)差.期望為、標(biāo)準(zhǔn)差為的正態(tài)分布通常記作. 正態(tài)變量的概率密度函數(shù)的圖象叫做正態(tài)曲線(xiàn). ⑵標(biāo)準(zhǔn)正態(tài)分布:我們把數(shù)學(xué)期望為,標(biāo)準(zhǔn)差為的正態(tài)分布叫做標(biāo)準(zhǔn)正態(tài)分布. ⑶重要結(jié)論: ①正態(tài)變量在區(qū)間,,內(nèi),取值的概率分別是,,. ②正態(tài)變量在內(nèi)的取值的概率為,在區(qū)間之外的取值的概率是,故正態(tài)變量的取值幾乎都在距三倍標(biāo)準(zhǔn)差之內(nèi),這就是正態(tài)分布的原則. ⑷若,為其概率密度函數(shù),則稱(chēng)為概率分布函數(shù),特別的,,稱(chēng)為標(biāo)準(zhǔn)正態(tài)分布函數(shù). . 標(biāo)準(zhǔn)正態(tài)分布的值可以通過(guò)標(biāo)準(zhǔn)正態(tài)分布表查得. 分布函數(shù)新課標(biāo)不作要求,適當(dāng)了解以加深對(duì)密度曲線(xiàn)的理解即可. 3.離散型隨機(jī)變量的期望與方差 1.離散型隨機(jī)變量的數(shù)學(xué)期望 定義:一般地,設(shè)一個(gè)離散型隨機(jī)變量所有可能的取的值是,,…,,這些值對(duì)應(yīng)的概率是,,…,,則,叫做這個(gè)離散型隨機(jī)變量的均值或數(shù)學(xué)期望(簡(jiǎn)稱(chēng)期望). 離散型隨機(jī)變量的數(shù)學(xué)期望刻畫(huà)了這個(gè)離散型隨機(jī)變量的平均取值水平. 2.離散型隨機(jī)變量的方差 一般地,設(shè)一個(gè)離散型隨機(jī)變量所有可能取的值是,,…,,這些值對(duì)應(yīng)的概率是,,…,,則叫做這個(gè)離散型隨機(jī)變量的方差. 離散型隨機(jī)變量的方差反映了離散隨機(jī)變量的取值相對(duì)于期望的平均波動(dòng)的大小(離散程度). 的算術(shù)平方根叫做離散型隨機(jī)變量的標(biāo)準(zhǔn)差,它也是一個(gè)衡量離散型隨機(jī)變量波動(dòng)大小的量. 3.為隨機(jī)變量,為常數(shù),則; 4. 典型分布的期望與方差: ⑴二點(diǎn)分布:在一次二點(diǎn)分布試驗(yàn)中,離散型隨機(jī)變量的期望取值為,在次二點(diǎn)分布試驗(yàn)中,離散型隨機(jī)變量的期望取值為. ⑵二項(xiàng)分布:若離散型隨機(jī)變量服從參數(shù)為和的二項(xiàng)分布,則,. ⑶超幾何分布:若離散型隨機(jī)變量服從參數(shù)為的超幾何分布, 則,. 4.事件的獨(dú)立性 如果事件是否發(fā)生對(duì)事件發(fā)生的概率沒(méi)有影響,即, 這時(shí),我們稱(chēng)兩個(gè)事件,相互獨(dú)立,并把這兩個(gè)事件叫做相互獨(dú)立事件. 如果事件,,…,相互獨(dú)立,那么這個(gè)事件都發(fā)生的概率,等于每個(gè)事件發(fā)生的概率的積,即,并且上式中任意多個(gè)事件換成其對(duì)立事件后等式仍成立. 5.條件概率 對(duì)于任何兩個(gè)事件和,在已知事件發(fā)生的條件下,事件發(fā)生的概率叫做條件概率,用符號(hào)“”來(lái)表示.把由事件與的交(或積),記做(或). 典例分析 【例1】 在拋擲一枚圖釘?shù)碾S機(jī)試驗(yàn)中,令,如果針尖向上的概率為,試寫(xiě)出隨機(jī)變量的概率分布. 【例2】 從裝有6只白球和4只紅球的口袋中任取一只球,用表示“取到的白球個(gè)數(shù)”,即 ,求隨機(jī)變量的概率分布. 【例3】 若隨機(jī)變量的概率分布如下: 0 1 試求出,并寫(xiě)出的分布列. 【例4】 拋擲一顆骰子兩次,定義隨機(jī)變量 試寫(xiě)出隨機(jī)變量的分布列. 【例5】 籃球運(yùn)動(dòng)員比賽投籃,命中得分,不中得分,已知運(yùn)動(dòng)員甲投籃命中率的概率為. ⑴ 記投籃次得分,求方差的最大值; ⑵ 當(dāng)⑴中取最大值時(shí),甲投次籃,求所得總分的分布列及的期望與方差.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 隨機(jī)變量及其分布列 版塊二 幾類(lèi)典型的隨機(jī)分布1完整講義學(xué)生版 2019 2020 年高 數(shù)學(xué) 隨機(jī)變量 及其 分布 版塊 典型 隨機(jī) 完整 講義 學(xué)生
鏈接地址:http://www.hcyjhs8.com/p-2616065.html