2019-2020年高中數(shù)學(xué) 第3章 2第2課時 最大值、最小值問題課時作業(yè) 北師大版選修2-2.doc
《2019-2020年高中數(shù)學(xué) 第3章 2第2課時 最大值、最小值問題課時作業(yè) 北師大版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第3章 2第2課時 最大值、最小值問題課時作業(yè) 北師大版選修2-2.doc(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第3章 2第2課時 最大值、最小值問題課時作業(yè) 北師大版選修2-2 一、選擇題 1.函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為( ) A. B. C. D. [答案] A [解析] f(x)=x-x3,f′(x)=1-3x2,令f′(x)=0得x=(x=-舍去),計算比較得最大值為f()=. 2.一艘輪船在航行中的燃料費和它的速度的立方成正比,已知在速度為每小時10 km時燃料費是每小時6元 ,而其他與速度無關(guān)的費用是每小時96元,則此輪船的速度為______km/h航行時,能使行駛每公里的費用總和最小( ) A.20 B.30 C.40 D.60 [答案] A [解析] 設(shè)船速為每小時x(x>0)公里,燃料費為Q元,則Q=kx3, 由已知得:6=k103, ∴k=,即Q=x3. 記行駛每公里的費用總和為y元,則 y=(x3+96)=x2+ y′=x-,令y′=0,即x-=0, 解之得:x=20. 這就是說,該函數(shù)在定義域(0,+∞)內(nèi)有唯一的極值點,該極值必有所求的最小值,即當(dāng)船速為每小時20公里時,航行每公里的總費用最小,最小值為7.2元. 3.已知函數(shù)f(x)=x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,則實數(shù)m的取值范圍是( ) A.m≥ B.m> C.m≤ D.m< [答案] A [解析] 由f ′(x)=2x3-6x2=0得,x=0或x=3, 經(jīng)檢驗知x=3是函數(shù)的一個最小值點, 所以函數(shù)的最小值為f(3)=3m-, 不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立, 所以3m-≥-9,解得m≥. 4.若函數(shù)f(x)=-x3+x在(a,10-a2)上有最大值,則實數(shù)a的取值范圍為( ) A.[-1,1) B.[-2,1) C.[-2,-1) D.(-2,+∞) [答案] B [解析] 由于f′(x)=-x2+1 ,易知函數(shù)在(-∞,-1]上遞減,在[-1,1]上遞增,[1,+∞)上遞減,故若函數(shù)在(a,10-a2)上存在最大值的條件為?-1≤a<1或綜上可知a的取值范圍為[-2,1). 5.設(shè)直線x=t與函數(shù)f(x)=x2,g(x)=lnx的圖像分別交于點M,N,則當(dāng)|MN|達到最小時t的值為( ) A.1 B. C. D. [答案] D [解析] 本小題考查內(nèi)容為導(dǎo)數(shù)的應(yīng)用——求函數(shù)的最小值. 令F(x)=f(x)-g(x)=x2-lnx,∴F′(x)=2x-. 令F′(x)=0,∴x=,∴F(x) 在x=處最?。? 二、填空題 6.下列結(jié)論中正確的有________. ①在區(qū)間[a,b]上,函數(shù)的極大值就是最大值; ②在區(qū)間[a,b]上,函數(shù)的極小值就是最小值; ③在區(qū)間[a,b]上,函數(shù)的最大值、最小值在x=a和x=b處取到; ④在區(qū)間[a,b]上,函數(shù)的極大(小)值有可能就是最大(小)值. [答案]?、? [解析] 由函數(shù)最值的定義知,①②③均不正確,④正確.故填④. 7.函數(shù)f(x)=ax4-4ax3+b(a>0)在[1,4]上的最大值為3,最小值為-6,則a+b=________. [答案] [解析] f′(x)=4ax3-12ax2(a>0,x∈[1,4]). 由f′(x)=0,得x=0(舍),或x=3,可得x=3時,f(x)取得最小值為b-27A. 又f(1)=b-3a,f(4)=b, ∴f(4)為最大值. 由解得∴a+b=. 8.設(shè)函數(shù)f(x)=ax3-3x+1(x∈R),若對于任意x∈[-1,1],都有f(x)≥0成立,則實數(shù)a的值為__________________. [答案] 4 [解析] 本小題考查函數(shù)單調(diào)性的綜合運用.若x=0,則不論a取何值,f(x)≥0顯然成立; 當(dāng)x>0即x∈(0,1]時,f(x)=ax3-3x+1≥0可化為a≥-, 設(shè)g(x)=-,則g′(x)=, 所以g(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減, 因此g(x) max=g=4,從而a≥4; 當(dāng)x<0即x∈[-1,0],f(x)=ax3-3x+1≥0可化為a≤-, g(x)在區(qū)間[-1,0)上單調(diào)遞增, 因此g(x)min=g(-1)=4,從而a≤4,綜上a=4. 三、解答題 9.(xx江西理,18)已知函數(shù)f(x)=(x2+bx+b)(b∈R). (1)當(dāng)b=4時,求f(x)的極值; (2)若f(x)在區(qū)間(0,)上單調(diào)遞增,求b的取值范圍. [解析] (1)當(dāng)b=4時,f(x)=(x+2)2的定義域為(-∞,),f ′(x)=, 由f ′(x)=0得x=-2或x=0. 當(dāng)x∈(-∞,-2)時,f ′(x)<0,f(x)單調(diào)遞減;當(dāng)x∈(-2,0)時,f ′(x)>0,f(x)單調(diào)遞增;當(dāng)x∈(0,)時,f ′(x)<0,f(x)單調(diào)遞減, 故f(x)在x=-2取極小值f(-2)=0,在x=0取極大值f(0)=4. (2)f ′(x)=,因為當(dāng)x∈(0,)時,<0, 依題意當(dāng)x∈(0,)時,有5x+(3b-2)≤0,從而+(3b-2)≤0. 所以b的取值范圍為(-∞,]. 10.(xx三峽名校聯(lián)盟聯(lián)考)時下,網(wǎng)校教學(xué)越來越受到廣大學(xué)生的喜愛,它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢,假設(shè)某網(wǎng)校的套題每日的銷售量y(單位:千套)與銷售價格x(單位:元/套)滿足的關(guān)系式y(tǒng)=+4(x-6)2,其中2- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第3章 2第2課時 最大值、最小值問題課時作業(yè) 北師大版選修2-2 2019 2020 年高 數(shù)學(xué) 課時 最大值 最小值 問題 作業(yè) 北師大 選修
鏈接地址:http://www.hcyjhs8.com/p-2719749.html