《初中數(shù)學競賽輔導講義及習題解答 第23講 圓與圓》由會員分享,可在線閱讀,更多相關《初中數(shù)學競賽輔導講義及習題解答 第23講 圓與圓(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第二十三講 圓與圓
圓與圓的位置關系有外離、外切、相交、內(nèi)切、內(nèi)含五種情形,判定兩圓的位置關系有如下三種方法:
1.通過兩圓交點的個數(shù)確定;
2.通過兩圓的半徑與圓心距的大小量化確定;
3.通過兩圓的公切線的條數(shù)確定.
為了溝通兩圓,常常添加與兩圓都有聯(lián)系的一些線段,如公共弦、共切線、連心線,以及兩圓公共部分相關的角和線段,這是解圓與圓位置關系問題的常用輔助線.
熟悉以下基本圖形、基本結論:
【例題求解】
【例1】 如圖,⊙Ol與半徑為4的⊙O2內(nèi)切于點A,⊙Ol經(jīng)過圓心O2,作⊙O2的直徑BC交⊙
2、Ol于點D,EF為過點A的公切線,若O2D=,那么∠BAF= 度.
思路點撥 直徑、公切線、O2的特殊位置等,隱含豐富的信息,而連O2Ol必過A點,先求出∠D O2A的度數(shù).
注:(1)兩圓相切或相交時,公切線或公共弦是重要的類似于“橋梁”的輔助線,它可以使弦切角與圓周角、圓內(nèi)接四邊形的內(nèi)角與外角得以溝通.同時,又是生成圓冪定理的重要因素.
(2)涉及兩圓位置關系的計算題,常作半徑、連心線,結合切線性質(zhì)等構造直角三角形,將分散的條件集中,
3、通過解直角三角形求解.
【例2】 如圖,⊙Ol與⊙O2外切于點A,兩圓的一條外公切線與⊙O1相切于點B,若AB與兩圓的另一條外公切線平行,則⊙Ol 與⊙O2的半徑之比為( )
A.2:5 B.1:2 C.1:3 D.2:3
思路點撥 添加輔助線,要探求兩半徑之間的關系,必須求出∠COlO2 (或∠DO2Ol)的度數(shù),為此需尋求∠CO1B、∠CO1A、∠BO1A的關系.
1 / 10
【例3】 如圖,已
4、知⊙Ol與⊙O2相交于A、B兩點,P是⊙Ol上一點,PB的延長線交⊙O2于點C,PA交⊙O2于點D,CD的延長線交⊙Ol于點N.
(1)過點A作AE∥CN交⊙Oll于點E,求證:PA=PE;
(2)連結PN,若PB=4,BC=2,求PN的長.
思路點撥 (1)連AB,充分運用與圓相關的角,證明∠PAE=∠PEA;(2)PBPC=PDPA,探尋PN、PD、PA對應三角形的聯(lián)系.
【例4】 如圖,兩個同心圓的圓心是O,AB是大圓的
5、直徑,大圓的弦與小圓相切于點D,連結OD并延長交大圓于點E,連結BE交AC于點F,已知AC=,大、小兩圓半徑差為2.
(1)求大圓半徑長;
(2)求線段BF的長;
(3)求證:EC與過B、F、C三點的圓相切.
思路點撥 (1)設大圓半徑為R,則小圓半徑為R-2,建立R的方程;(2)證明△EBC∽△ECF;(3)過B、F、C三點的圓的圓心O′,必在BF上,連OˊC,證明∠O′CE=90.
注:本例以同心圓為背景,綜合了垂徑定
6、理、直徑所對的圓周角為直角、切線的判定、勾股定理、相似三角形等豐富的知識.作出圓中基本輔助線、運用與圓相關的角是解本例的關鍵.
【例5】 如圖,AOB是半徑為1的單位圓的四分之一,半圓O1的圓心O1在OA上,并與弧AB內(nèi)切于點A,半圓O2的圓心O2在OB上,并與弧AB內(nèi)切于點B,半圓O1與半圓O2相切,設兩半圓的半徑之和為,面積之和為.
(1)試建立以為自變量的函數(shù)的解析式;
(2)求函數(shù)的最小值.
思路點撥 設兩圓半徑分別為R、r,對于(1
7、),,通過變形把R2+r2用“=R+r”的代數(shù)式表示,作出基本輔助線;對于(2),因=R+r,故是在約束條件下求的最小值,解題的關鍵是求出R+r的取值范圍.
注:如圖,半徑分別為r、R的⊙Ol 、⊙O2外切于C,AB,CM分別為兩圓的公切線,OlO2與AB交于P點,則:
(1)AB=2;
(2) ∠ACB=∠Ol M O2=90;
(3)PC2=PAPB;
(4)sinP=;
(5)設C到AB的距離為d,則.
學力訓練
1.已知:⊙Ol和⊙O2交于A、B兩點,且⊙Ol經(jīng)過點O2,若∠AOlB=90,則∠A O2
8、B的度數(shù)是 .
2.矩形ABCD中,AB=5,BC=12,如果分別以A、C為圓心的兩圓相切,點D在圓C內(nèi),點B在圓C外,那么圓A的半徑r的取值范圍 .
(2003年上海市中考題)
3.如圖;⊙Ol 、⊙O2相交于點A、B,現(xiàn)給出4個命題:
(1)若AC是⊙O2的切線且交⊙Ol于點C,AD是⊙Ol的切線且交⊙O2于點D,則AB2=BCBD;
(2)連結AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,則OlO2=25cm;
(3)若CA是⊙Ol的直徑,DA是⊙O2 的一條非直徑的弦,且點D、B不重合,
9、則C、B、D三點不在同一條直線上,
(4)若過點A作⊙Ol的切線交⊙O2于點D,直線DB交⊙Ol于點C,直線CA 交⊙O2于點E,連結DE,則DE2=DBDC,則正確命題的序號是 (寫出所有正確命題的序號) .
4.如圖,半圓O的直徑AB=4,與半圓O內(nèi)切的動圓Ol與AB切于點M,設⊙Ol的半徑為,AM的長為,則與的函數(shù)關系是 ,自變量的取值范圍是 .
10、
5.如圖,施工工地的水平地面上,有三根外徑都是1米的水泥管兩兩相切摞在一起,則其最高點到地面的距離是( )
A.2 B. C. D.
6.如圖,已知⊙Ol、⊙O2相交于A、B兩點,且點Ol在⊙O2上,過A作⊙Oll的切線AC交B Ol的延長線于點P,交⊙O2于點C,BP交⊙Ol于點D,若PD=1,PA=,則AC的長為( )
A. B. C. D.
7.如圖,⊙Ol和⊙O2外切于A,PA是
11、內(nèi)公切線,BC是外公切線,B、C是切點①PB=AB;②∠PBA=∠PAB;③△PAB∽△OlAB;④PBPC=OlAO2A.
上述結論,正確結論的個數(shù)是( )
A.1 B.2 C.3 D.4
8.兩圓的半徑分別是和r (R>r),圓心距為d,若關于的方程有兩個相等的實數(shù)根,則兩圓的位置關系是( )
A.一定內(nèi)切 B.一定外切 C.相交 D.內(nèi)切或外切
9.如圖,⊙Ol和⊙O2內(nèi)切
12、于點P,過點P的直線交⊙Ol于點D,交⊙O2于點E,DA與⊙O2相切,切點為C.
(1)求證:PC平分∠APD;
(2)求證:PDPA=PC2+ACDC;
(3)若PE=3,PA=6,求PC的長.
10.如圖,已知⊙Ol和⊙O2外切于A,BC是⊙Ol和⊙O2的公切線,切點為B、C,連結BA并延長交⊙Ol于D,過D點作CB的平行線交⊙O2于E、F,求證:(1)CD是⊙Ol的直徑;(2)試判斷線段BC、BE、BF的大小關系,并證明你的結論.
1
13、1.如圖,已知A是⊙Ol、⊙O2的一個交點,點M是 OlO2的中點,過點A的直線BC垂直于MA,分別交⊙Ol、⊙O2于B、C.
(1)求證:AB=AC;
(2)若Ol A切⊙O2于點A,弦AB、AC的弦心距分別為dl、d2,求證:dl+d2=O1O2;
(3)在(2)的條件下,若dld2=1,設⊙Ol、⊙O2的半徑分別為R、r,求證:R2+r2= R2r2.
12.已知半徑分別為1和2的兩個圓外切于點P,則點P到兩圓外公切線的距離為 .
13.如圖,7根圓形筷子的橫截面圓半徑為r,則捆扎這7根筷子一周的繩子的長度
14、為 .
14.如圖,⊙Ol和⊙O2內(nèi)切于點P,⊙O2的弦AB經(jīng)過⊙Ol的圓心Ol,交⊙Ol于C、D,若AC:CD:DB=3:4:2,則⊙Ol與⊙O2的直徑之比為( )
A.2:7 B.2:5 C.2:3 D. 1:3
15.如圖,⊙Ol與⊙O2相交,P是⊙Ol上的一點,過P點作兩圓的切線,則切線的條數(shù)可能是( )
A.1,2 B.1,3 C.1,2,3 D.1,2,3,4
15、
16.如圖,相等兩圓交于A、B兩點,過B任作一直線交兩圓于M、N,過M、N各引所在圓的切線相交于C,則四邊形AMCN有下面關系成立( )
A.有內(nèi)切圓無外接圓 B有外接圓無內(nèi)切圓
C.既有內(nèi)切圓,也有外接圓 D.以上情況都不對
17.已知:如圖,⊙O與相交于A,B兩點,點P在⊙O上,⊙O的弦AC切⊙P于點A,
16、CP及其延長線交⊙P P于點D,E,過點E作EF⊥CE交CB的延長線于F.
(1)求證:BC是⊙P的切線;
(2)若CD=2,CB=,求EF的長;
(3)若k=PE:CE,是否存在實數(shù)k,使△PBD恰好是等邊三角形?若存在,求出是的值;若不存在,請說明理由.
18.如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
(1)若PC=PD,求PB的長
17、;
(2)試問線段AB上是否存在一點P,使PC2+PD2=4?,如果存在,問這樣的P點有幾個?并求出PB的值;如果不存在,說明理由;
(3)當點F在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.
請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少,或PC、PD具有何種關系)時,這兩個三角形仍相似;并判斷此時直線CP與OB的位置關系,證明你的結論.
19.如圖,D、E是△ABC邊BC上的兩點,F(xiàn)是BA延長線上一點,∠DAE=∠CAF.
(1)判斷△ABD的外接圓與
18、△AEC的外接圓的位置關系,并證明你的結論;
(2)若△ABD的外接圓半徑是△AEC的外接圓半徑的2倍,BC=6,AB=4,求BE的長.
20.問題:要將一塊直徑為2cm的半圓形鐵皮加工成一個圓柱的兩個底面和一個圓錐的底面.
操作:方案一:在圖甲中,設計一個使圓錐底面最大,半圓形鐵皮得以最充分利用的方案(要求,畫示意圖) .
方案二;在圖乙中,設計一個使圓柱兩個底面最大,半圓形鐵皮得以最充分利用的方案(要求:畫示意圖);
19、 ,
探究:(1)求方案一中圓錐底面的半徑;
(2)求方案二中圓錐底面及圓柱底面的半徑;
(3)設方案二中半圓圓心為O,圓柱兩個底面的圓心為O1、O2,圓錐底面的圓心為O3,試判斷以O1、O2、O3、O為頂點的四邊形是什么樣的特殊四邊形,并加以證明.
參考答案
希望對大家有所幫助,多謝您的瀏覽!