《河北省二十冶綜合學(xué)校高考數(shù)學(xué)總復(fù)習(xí) 排列組合練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《河北省二十冶綜合學(xué)校高考數(shù)學(xué)總復(fù)習(xí) 排列組合練習(xí)(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
河北省二十冶綜合學(xué)校高中分校高考數(shù)學(xué)總復(fù)習(xí) 排列組合練習(xí)
1注意區(qū)別“恰好”與“至少”
從6雙不同顏色的手套中任取4只,其中恰好有一雙同色的手套的不同取法共有多少種
2特殊元素(或位置)優(yōu)先安排
將5列車停在5條不同的軌道上,其中a列車不停在第一軌道上,b列車不停在第二軌道上,那么不同的停放方法有種
3“相鄰”用“捆綁”,“不鄰”就“插空”
七人排成一排,甲、乙兩人必須相鄰,且甲、乙都不與丙相鄰,則不同的排法有多少種
4、混合問題,先“組”后“排”
對(duì)某種產(chǎn)品的6件不同的正品和4件不同的次品,一一進(jìn)行測(cè)試,至區(qū)分出所有次品為止,若所有次品恰好在第5次測(cè)試時(shí)全部發(fā)現(xiàn),則這
2、樣的測(cè)試方法有種可能?
5、分清排列、組合、等分的算法區(qū)別
(1)今有10件不同獎(jiǎng)品,從中選6件分給甲一件,乙二件和丙三件,有多少種分法?
(2) 今有10件不同獎(jiǎng)品, 從中選6件分給三人,其中1人一件1人二件1人三件, 有多少種分法?
(3) 今有10件不同獎(jiǎng)品, 從中選6件分成三份,每份2件, 有多少種分法?
6、分類組合,隔板處理
從6個(gè)學(xué)校中選出30名學(xué)生參加數(shù)學(xué)競(jìng)賽,每校至少有1人,這樣有幾種選法?
練習(xí),28頁13題
練習(xí),28頁B組3題
例1. 設(shè),
當(dāng)時(shí),求的值
例2.在的展開式中,求:
2 / 3
①二項(xiàng)式
3、系數(shù)的和;
②各項(xiàng)系數(shù)的和;
③奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和與偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和;
④奇數(shù)項(xiàng)系數(shù)和與偶數(shù)項(xiàng)系數(shù)和;
⑤的奇次項(xiàng)系數(shù)和與的偶次項(xiàng)系數(shù)和.
例3.已知:的展開式中,各項(xiàng)系數(shù)和比它的二項(xiàng)式系數(shù)和大.
(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)求展開式中系數(shù)最大的項(xiàng)
二項(xiàng)展開式中的二項(xiàng)式系數(shù)都是一些特殊的組合數(shù),它有三條性質(zhì),要理解和掌握好,同時(shí)要注意“系數(shù)”與“二項(xiàng)式系數(shù)”的區(qū)別,不能混淆,只有二項(xiàng)式系數(shù)最大的才是中間項(xiàng),而系數(shù)最大的不一定是中間項(xiàng),尤其要理解和掌握“取特值”法,它是解決有關(guān)二項(xiàng)展開式系數(shù)的問題的重要手段。
希望對(duì)大家有所幫助,多謝您的瀏覽!