高考數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程教師用書 理 選修44
《高考數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程教師用書 理 選修44》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程教師用書 理 選修44(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第二節(jié) 參數(shù)方程 ☆☆☆2017考綱考題考情☆☆☆ 考綱要求 真題舉例 命題角度 1.了解參數(shù)方程及其參數(shù)的意義; 2.能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和橢圓的參數(shù)方程。 2016,全國卷Ⅱ,23,10分(參數(shù)方程求最值) 2016,江蘇卷,21,10分(直線方程的應(yīng)用) 2015,全國卷Ⅱ,23,10分(參數(shù)方程化普通方程) 1.直線與圓的參數(shù)方程是歷年高考命題的熱點(diǎn); 2.直線與圓的參數(shù)方程與位置關(guān)系是高考的重點(diǎn); 3.應(yīng)用參數(shù)方程求最值也是高考的重點(diǎn)。 微知識 小題練 自|主|排|查 1.參數(shù)方程的概念 一般地,在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的
2、坐標(biāo)x,y都是某個變數(shù)t的函數(shù):①并且對于t的每一個允許值,由方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么方程組①叫做這條曲線的參數(shù)方程,t叫做參變數(shù),簡稱參數(shù)。相對于參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程。 2.直線的參數(shù)方程 過定點(diǎn)P0(x0,y0)且傾斜角為α的直線的參數(shù)方程為(t為參數(shù)),則參數(shù)t的幾何意義是有向線段的數(shù)量。 3.圓的參數(shù)方程 圓心為(a,b),半徑為r,以圓心為頂點(diǎn)且與x軸同向的射線,按逆時針方向旋轉(zhuǎn)到圓上一點(diǎn)所在半徑形成的角α為參數(shù)的圓的參數(shù)方程為α∈[0,2π)。 4.橢圓的參數(shù)方程 以橢圓的離心角θ為參數(shù),橢圓+=1(a>b>0)
3、的參數(shù)方程為θ∈[0,2π)。 微點(diǎn)提醒 1.將參數(shù)方程化為普通方程時,要注意防止變量x和y取值范圍的擴(kuò)大或縮小,必須根據(jù)參數(shù)的取值范圍,確定函數(shù)f(t)和g(t)的值域,即x和y的取值范圍。 2.直線的參數(shù)方程中,參數(shù)t的系數(shù)的平方和為1時,t才有幾何意義且?guī)缀我饬x為:|t|是直線上任一點(diǎn)M(x,y)到M0(x0,y0)的距離。 小|題|快|練 1.若直線的參數(shù)方程為(t為參數(shù)),則直線的傾斜角為__________。 【解析】 由直線的參數(shù)方程知,斜率k===-=tanθ,θ為直線的傾斜角,所以該直線的傾斜角為150。 【答案】 150 2.曲線(θ為參數(shù))的左焦點(diǎn)的坐標(biāo)是
4、__________。 【解析】 化為普通方程為+=1,故左焦點(diǎn)為(-4,0)。 【答案】 (-4,0) 3.已知直線l1:(t為參數(shù))與直線l2:(s為參數(shù))垂直,則k的值是________。 【解析】 直線l1的方程為y=-x+,斜率為-; 直線l2的方程為y=-2x+1,斜率為-2。 ∵l1與l2垂直, ∴(-2)=-1?k=-1。 【答案】?。? 4.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知射線θ=與曲線(t為參數(shù))相交于A,B兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為__________。 【解析】 記A(x1,y1),B(x2,y2),
5、將射線θ=轉(zhuǎn)化為直角坐標(biāo)方程為y=x(x≥0),曲線為y=(x-2)2,聯(lián)立上述兩個方程得x2-5x+4=0,所以x1+x2=5,故線段AB的中點(diǎn)坐標(biāo)為。 【答案】 5.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(參數(shù)t∈R),圓C的參數(shù)方程為(參數(shù)θ∈[0,2π)),則圓心C到直線l的距離是__________。 【解析】 直線方程可化為x-y+1=0,圓的方程可化為(x-1)2+y2=1。由點(diǎn)到直線的距離公式可得,圓心C(1,0)到直線l的距離為=。 【答案】 微考點(diǎn) 大課堂 考點(diǎn)一 參數(shù)方程與普通方程的互化 【典例1】 將下列參數(shù)方程化為普通方程。 (1)(
6、t為參數(shù)); (2)(θ為參數(shù))。 【解析】 (1)∵2+2=1, ∴x2+y2=1。 ∵t2-1≥0,∴t≥1或t≤-1。 又x=,∴x≠0。 當(dāng)t≥1時,0<x≤1, 當(dāng)t≤-1時,-1≤x<0, ∴所求普通方程為 x2+y2=1。 (2)∵y=-1+cos2θ=-1+1-2sin2θ=-2sin2θ, sin2θ=x-2, ∴y=-2x+4,∴2x+y-4=0。 ∵0≤sin2θ≤1,∴0≤x-2≤1?!?≤x≤3。 ∴所求的普通方程為2x+y-4=0(2≤x≤3)。 【答案】 (1)x2+y2=1 (2)2x+y-4=0(2≤x≤3) 反思?xì)w納 將參數(shù)
7、方程化為普通方程的方法 1.將參數(shù)方程化為普通方程,需要根據(jù)參數(shù)方程的結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒?。常見的消參方法有:代入消參法、加減消參法、平方消參法等,對于含三角函數(shù)的參數(shù)方程,常利用同角三角函數(shù)關(guān)系式消參,如sin2θ+cos2θ=1等。 2.將參數(shù)方程化為普通方程時,要注意兩種方程的等價性,不要增解。 【變式訓(xùn)練】 將下列參數(shù)方程化為普通方程。 (1)(2) 【解析】 (1)兩式相除,得k=,將其代入得x=,化簡得所求的普通方程是4x2+y2-6y=0(y≠6)。 (2)由(sinθ+cosθ)2=1+sin2θ=2-(1-sin2θ) 得y2=2-x。又x=1-sin2
8、θ∈[0,2], 得所求的普通方程為y2=2-x,x∈[0,2]。 【答案】 (1)4x2+y2-6y=0(y≠6) (2)y2=2-x,x∈[0,2] 考點(diǎn)二 直線參數(shù)方程的應(yīng)用 【典例2】 (2016江蘇高考)在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),橢圓C的參數(shù)方程為(θ為參數(shù))。設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求線段AB的長。 【解析】 橢圓C的普通方程為x2+=1。 將直線l的參數(shù)方程代入x2+=1,得2+=1,即7t2+16t=0,解得t1=0,t2=-。所以|AB|=|t1-t2|=。 【答案】 反思?xì)w納 經(jīng)過點(diǎn)P(x0,y0),傾斜
9、角為α的直線l的參數(shù)方程為(t為參數(shù))。若A,B為直線l上兩點(diǎn),其對應(yīng)的參數(shù)分別為t1,t2。線段AB的中點(diǎn)為M,點(diǎn)M所對應(yīng)的參數(shù)為t0。注意以下幾個常用的結(jié)論:(1)t0=;(2)|PM|=|t0|=; (3)|AB|=|t2-t1|;(4)|PA||PB|=|t1t2|。 【變式訓(xùn)練】 在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ。 (1)求圓C的圓心到直線l的距離; (2)設(shè)圓C與直線l交于點(diǎn)A、B。若點(diǎn)P的坐標(biāo)為(3,),求|PA|+|PB|。 【解
10、析】 (1)由ρ=2sin θ,得x2+y2-2y=0,即圓C的直角坐標(biāo)方程為x2+(y-)2=5。 由可得直線l的普通方程為x+y--3=0。 所以圓C的圓心(0,)到直線l的距離為=。 (2)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得2+2=5,即t2-3t+4=0。 由于Δ=(3)2-44=2>0,故可設(shè)t1,t2是上述方程的兩個實根,所以 又直線l過點(diǎn)P(3,),故由上式及t的幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2=3。 【答案】 (1) (2)3 考點(diǎn)三 圓的參數(shù)方程的應(yīng)用 【典例3】 已知曲線C1:(t為參數(shù)),曲線C2:(θ為參數(shù))。 (
11、1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線; (2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3:(t為參數(shù))的距離的最小值。 【解析】 (1)曲線C1:(x+4)2+(y-3)2=1,曲線C2:+=1, 曲線C1是以(-4,3)為圓心,1為半徑的圓; 曲線C2是以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在x軸上,長半軸長是8,短半軸長是3的橢圓。 (2)當(dāng)t=時,P(-4,4),Q(8cosθ,3sinθ),故M。曲線C3為直線x-2y-7=0,M到C3的距離d=|4cosθ-3sinθ-13|,從而當(dāng)cosθ=,sinθ=-時,d取最小值。 【答案】
12、(1)見解析 (2) 反思?xì)w納 將參數(shù)方程中的參數(shù)消去便可得到曲線的普通方程,消去參數(shù)時常用的方法是代入法,有時也可根據(jù)參數(shù)的特征,通過對參數(shù)方程的加、減、乘、除、乘方等運(yùn)算消去參數(shù),消參時要注意參數(shù)的取值范圍對普通方程中點(diǎn)的坐標(biāo)的影響。 【變式訓(xùn)練】 在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈。 (1)求C的參數(shù)方程; (2)設(shè)點(diǎn)D在C上,C在D處的切線與直線l:y=x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標(biāo)。 【解析】 (1)C的普通方程為(x-1)2+y2=1(0≤y≤1)。 可得C的參數(shù)方程為
13、 (t為參數(shù),0≤t≤π)。 (2)設(shè)D(1+cost,sint)。由(1)知C是以C(1,0)為圓心,1為半徑的上半圓。 因為C在點(diǎn)D處的切線與l垂直,所以直線CD與l的斜率相同,tant=,t=。 故點(diǎn)D的直角坐標(biāo)為,即。 【答案】 (1)(t為參數(shù),0≤t≤π) (2) 考點(diǎn)四 橢圓參數(shù)方程的應(yīng)用 【典例4】 (2016全國卷Ⅲ)在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù))。以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin=2。 (1)寫出C1的普通方程和C2的直角坐標(biāo)方程; (2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ
14、|的最小值及此時P的直角坐標(biāo)。 【解析】 (1)C1的普通方程為+y2=1,C2的直角坐標(biāo)方程為x+y-4=0。 (2)由題意,可設(shè)點(diǎn)P的直角坐標(biāo)為(cosα,sinα)。因為C2是直線,所以|PQ|的最小值即為P到C2的距離d(α)的最小值,d(α)= =|sin-2|。 當(dāng)且僅當(dāng)α=2kπ+(k∈Z)時,d(α)取得最小值,最小值為,此時P的直角坐標(biāo)為。 【答案】 (1)C1為+y2=1,C2為x+y-4=0 (2)最小值為,P 反思?xì)w納 橢圓的參數(shù)方程實質(zhì)是三角代換,有關(guān)橢圓上的動點(diǎn)距離的最大值、最小值以及取值范圍的問題,通常利用橢圓的參數(shù)方程轉(zhuǎn)化為三角函數(shù)的最大值、最小值
15、求解。 【變式訓(xùn)練】 在平面直角坐標(biāo)系xOy中,動圓x2+y2-4xcosθ-4ysinθ+7cos2θ-8=0(θ∈R,θ為參數(shù))的圓心軌跡為曲線C,點(diǎn)P在曲線C上運(yùn)動。以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,若直線l的極坐標(biāo)方程為2ρcos=3,求點(diǎn)P到直線l的最大距離。 【解析】 將動圓的方程配方,得 (x-2cosθ)2+(y-2sinθ)2=9+3sin2θ, 設(shè)圓心(x,y),則(θ∈R,θ為參數(shù)), 即曲線C的參數(shù)方程為(θ∈R,θ為參數(shù)), 直線l的直角坐標(biāo)方程為x-y-3=0, 設(shè)點(diǎn)P(x1,y1),則(θ∈R,θ為參數(shù)),點(diǎn)P到直線l的距離d= =,
16、其中tanφ=-。 ∴當(dāng)sin(θ+φ)=-1時,點(diǎn)P到直線l的距離d取得最大值。 【答案】 微考場 新提升 1.已知直線l的參數(shù)方程為(t為參數(shù)),圓C的參數(shù)方程為(θ為參數(shù))。 (1)求直線l和圓C的普通方程; (2)若直線l與圓C有公共點(diǎn),求實數(shù)a的取值范圍。 解析 (1)直線l的普通方程為2x-y-2a=0, 圓C的普通方程為x2+y2=16。 (2)因為直線l與圓C有公共點(diǎn), 故圓C的圓心到直線l的距離d=≤4, 解得-2≤a≤2。 答案 (1)l為2x-y-2a=0,C為x2+y2=16 (2)[-2,2] 2.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程
17、為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=。 (1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程; (2)試判斷曲線C1與C2是否存在兩個交點(diǎn),若存在,求出兩交點(diǎn)間的距離;若不存在,說明理由。 解析 (1)對于曲線C1有x+y=1,對于曲線C2有+y2=1。 (2)顯然曲線C1:x+y=1為直線,則其參數(shù)方程可寫為(α為參數(shù)),與曲線C2:+y2=1聯(lián)立,可得5α2-12α+8=0,可知Δ>0,所以C1與C2存在兩個交點(diǎn), 由α1+α2=,α1α2=,得兩交點(diǎn)間的距離d=|α2-α1|==。 答案 (1)C1為x+y=1,C2為+y
18、2=1 (2)存在,兩交點(diǎn)間的距離為 3.(2017赤峰模擬)在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的極坐標(biāo)方程為ρsin=2。 (1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程; (2)求曲線C上的點(diǎn)到直線l的最大距離。 解析 (1)由ρsin=2得 ρ(sinθ-cosθ)=4, 所以l:x-y+4=0, 由得C:x2+=1。 (2)在C上任取一點(diǎn)P(cosθ,sinθ),則點(diǎn)P到直線l的距離為d==, 其中cosφ=,sinφ=, 所以當(dāng)cos(θ+φ)=1時,dmax=2+。 答案 (1)C為x2+=1,l為x-y+4=0 (2)2+ 我國經(jīng)濟(jì)發(fā)展進(jìn)入新常態(tài),需要轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式,改變粗放式增長模式,不斷優(yōu)化經(jīng)濟(jì)結(jié)構(gòu),實現(xiàn)經(jīng)濟(jì)健康可持續(xù)發(fā)展進(jìn)區(qū)域協(xié)調(diào)發(fā)展,推進(jìn)新型城鎮(zhèn)化,推動城鄉(xiāng)發(fā)展一體化因:我國經(jīng)濟(jì)發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實挑戰(zhàn)。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第7課時圖形的位置練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第1課時圖形的認(rèn)識與測量1平面圖形的認(rèn)識練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊1負(fù)數(shù)第1課時負(fù)數(shù)的初步認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)上冊期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊易錯清單十二課件新人教版
- 標(biāo)準(zhǔn)工時講義
- 2021年一年級語文上冊第六單元知識要點(diǎn)習(xí)題課件新人教版
- 2022春一年級語文下冊課文5識字測評習(xí)題課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時數(shù)學(xué)思考1練習(xí)課件新人教版