《山東省樂陵市高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.1.1 指數(shù)與指數(shù)冪的運算 2.1.1.2 對數(shù)及其運算1導(dǎo)學(xué)案無答案新人教A版必修1》由會員分享,可在線閱讀,更多相關(guān)《山東省樂陵市高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.1.1 指數(shù)與指數(shù)冪的運算 2.1.1.2 對數(shù)及其運算1導(dǎo)學(xué)案無答案新人教A版必修1(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
對數(shù)及其運算(1)
【學(xué)習目標】1.理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;
2. 理解對數(shù)的底數(shù)與真數(shù)的范圍;
3. 掌握對數(shù)的基本性質(zhì)及對數(shù)恒等式。
【重點】對數(shù)的概念及指數(shù)式與對數(shù)式的互化
【難點】對數(shù)的基本性質(zhì)及對數(shù)恒等式
【課前達標】
1. 某細胞分裂時,每次每個細胞分裂為2個,則1個細胞第1次分裂后變?yōu)?個細胞,第2次分裂后得到4個細胞,第3次分裂后得8個細胞,以此類推,第______次分裂后細胞個數(shù)是256個?
2. 質(zhì)量為1的一種放射性物質(zhì)不斷衰變成其他物質(zhì),每經(jīng)過一年剩留的質(zhì)量約是原來的,則_____年后這種物質(zhì)的剩留量為原來的.
3. 例如:,仿照
2、典例填空
因為 所以 因為 所
因為 所以
思考:若,則( )=____________.
4. 對數(shù)的定義:一般地,對于指數(shù)式,把,記作___________其中,數(shù)叫做 ,N叫做 。
5. 由定義得 ,這式子稱為對數(shù)恒等式
6.對數(shù)的性質(zhì):
(1) ;
(2)
3、 ;
(3)
7. 常用對數(shù):把以10為底的對數(shù)叫做常用對數(shù),記作
【自我檢測】課本97頁練習A (直接寫結(jié)果)
1. (1) (2)
(3) (4)
(5) (6)
(7) (8)
(9)
4、 (10)
2. (1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
3. (1) (2)
(3)
5、 (4)
4. (1) (2)
(3) (4)
3.2.1 對數(shù)及其運算一(自研自悟)
例1 (1)設(shè)則=____________;
(2)設(shè),則
(3)若則;
(4)若
例2 求下列各式的值
(1)
(2) =____________ =____________
(3)
6、=____________ =____________
(4) (5) 的值。
[反思與總結(jié)]
[自練自提]
1、有下列說法:
(1)零和負數(shù)沒有對數(shù);
(2)任何一個指數(shù)式都可以化成對數(shù)式;
(3)以10為底的對數(shù)叫做常用對數(shù);
其中正確命題的個數(shù)為( )
A. 1 B. 2 C. 3 D. 0
2、若,則x = ( )
A. 0 B. 1 C. 3 D. 10
3、如果N=a2 (a>0,a≠1)
7、,則有( )
A. B. C. D.
4【選做】已知那么等于( )
A. B. C. D.
5、把化成對數(shù)式為_______________________。
6、求下列各式中的值:
(6) (7)
我國經(jīng)濟發(fā)展進入新常態(tài),需要轉(zhuǎn)變經(jīng)濟發(fā)展方式,改變粗放式增長模式,不斷優(yōu)化經(jīng)濟結(jié)構(gòu),實現(xiàn)經(jīng)濟健康可持續(xù)發(fā)展進區(qū)域協(xié)調(diào)發(fā)展,推進新型城鎮(zhèn)化,推動城鄉(xiāng)發(fā)展一體化因:我國經(jīng)濟發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實挑戰(zhàn)。