《高三理科數(shù)學(xué) 二輪復(fù)習(xí)跟蹤強(qiáng)化訓(xùn)練:18 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué) 二輪復(fù)習(xí)跟蹤強(qiáng)化訓(xùn)練:18 Word版含解析(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
跟蹤強(qiáng)化訓(xùn)練(十八)
一、選擇題
1.在數(shù)列{an}中,a1=1,對(duì)于所有的n≥2,n∈N都有a1·a2·a3·…·an=n2,則a3+a5=( )
A. B. C. D.
[解析] 解法一:令n=2,3,4,5,分別求出a3=,a5=,∴a3+a5=,故選A.
解法二:當(dāng)n≥2時(shí),a1·a2·a3·…·an=n2.當(dāng)n≥3時(shí),a1·a2·a3·…·an-1=(n-1)2.
兩式相除得an=2,∴a3=,a5
2、=,∴a3+a5=,故選A.
[答案] A
2.已知a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式是an=( )
A.n B.n-1
C.n2 D.2n-1
[解析] 由an=n(an+1-an),得=,所以數(shù)列為常數(shù)列,所以==…==1,所以an=n,故選A.
[答案] A
3.已知數(shù)列{an}滿足a1=2,an+1=(n∈N*),則a1·a2·a3·…·a20xx=( )
A.-6 B.6 C.-2 D.2
[解析] ∵a1=2,an+1=,∴a2==-3,同理,a3=-,a4=,a5=
3、2,…,∴an+4=an,a1a2a3a4=1,∴a1·a2·a3·…·a20xx=(a1a2a3a4)504×a1=1×2=2.故選D.
[答案] D
4.(20xx·衡水中學(xué)二調(diào))已知Sn是數(shù)列{an}的前n項(xiàng)和,a1=1,a2=2,a3=3,數(shù)列{an+an+1+an+2}是公差為2的等差數(shù)列,則S25=( )
A.232 B.233 C.234 D.235
[解析] ∵數(shù)列{an+an+1+an+2}是公差為2的等差數(shù)列,∴an+3-an=(an+1+an+2+an+3)-(an+an+1+an+2)
4、=2,∴a1,a4,a7,…是首項(xiàng)為1,公差為2的等差數(shù)列,a2,a5,a8,…是首項(xiàng)為2,公差為2的等差數(shù)列,a3,a6,a9,…是首項(xiàng)為3,公差為2的等差數(shù)列,∴S25=(a1+a4+a7+…+a25)+(a2+a5+a8+…+a23)+(a3+a6+a9+…+a24)=9×1++8×2++8×3+=233,故選B.
[答案] B
5.(20xx·鄭州模擬)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,則下列一定成立的是( )
A.若a3>0,則a20xx<0
B.若a4>0,則a20xx<0
C.若a3>0,則S2
5、0xx>0
D.若a4>0,則S20xx>0
[解析] 根據(jù)等比數(shù)列的通項(xiàng)公式得a20xx=a1·q20xx=a3q20xx,a20xx=a1q20xx=a4q20xx,易知A,B錯(cuò)誤.對(duì)于選項(xiàng)C,因?yàn)閍3=a1q2>0,所以a1>0,當(dāng)q>0時(shí),任意an>0,故有S20xx>0;當(dāng)q<0時(shí),仍然有S20xx=>0,C正確.對(duì)于選項(xiàng)D,可列舉公比q=-1的等比數(shù)列-1,1,-1,1,…,顯然滿足a4>0,但S20xx=0,故D錯(cuò)誤.故選C.
[答案] C
6.(20xx·山西大同模擬)已知數(shù)列{an}
6、的通項(xiàng)公式為an=(-1)n(2n-1)·cos+1(n∈N*),其前n項(xiàng)和為Sn,則S60=( )
A.-30 B.-60 C.90 D.120
[解析] 由題意可得,當(dāng)n=4k-3(k∈N*)時(shí),an=a4k-3=1;當(dāng)n=4k-2(k∈N*)時(shí),an=a4k-2=6-8k;當(dāng)n=4k-1(k∈N*)時(shí),an=a4k-1=1;當(dāng)n=4k(k∈N*)時(shí),an=a4k=8k.∴a4k-3+a4k-2+a4k-1+a4k=8,
∴S60=8×15=120.
[答案] D
二、填空題
7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足log2(Sn+1)=n+1(
7、n∈N*),則an=________.
[解析] 由已知可得Sn+1=2n+1,則Sn=2n+1-1.當(dāng)n=1時(shí),a1=S1=3,當(dāng)n≥2時(shí),an=Sn-Sn-1=2n+1-1-2n+1=2n,因?yàn)閚=1時(shí)不滿足an=2n,故an=
[答案]
8.(20xx·河南新鄉(xiāng)三模)若數(shù)列{an+1-an}是等比數(shù)列,且a1=1,a2=2,a3=5,則an=________.
[解析] ∵a2-a1=1,a3-a2=3,∴q=3,
∴an+1-an=3n-1,∴an-a1=a2-a1+a3-a2+…+an-1-an-2+an-an-1=1+3+…+3n-2=,
∵a1=1,∴an
8、=.
[答案]
9.(20xx·安徽省淮北一中高三最后一卷改編)若數(shù)列{an}滿足-=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為“調(diào)和數(shù)列”,已知正項(xiàng)數(shù)列為“調(diào)和數(shù)列”,且b1+b2+…+b20xx=20xx0,則b2b20xx的最大值是________.
[解析] 因?yàn)閿?shù)列是“調(diào)和數(shù)列”,所以bn+1-bn=d,
即數(shù)列{bn}是等差數(shù)列,
所以b1+b2+…+b20xx===20xx0,
所以b2+b20xx=20.
又>0,所以b2>0,b20xx>0,
所以b2+b20xx=20≥2,
即b2b20xx≤100(當(dāng)且僅當(dāng)b2=b20xx
9、時(shí)等號(hào)成立),因此b2b20xx的最大值為100.
[答案] 100
三、解答題
10.(20xx·鄭州質(zhì)檢)已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn,且數(shù)列是公差為2的等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(-1)nan,求數(shù)列{bn}的前n項(xiàng)和Tn.
[解] (1)由已知條件得=1+(n-1)×2=2n-1,
∴Sn=2n2-n.
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n2-n-[2(n-1)2-(n-1)]=4n-3.
當(dāng)n=1時(shí),a1=S1=1,而4×1-3=1,∴an=4n-3.
(2)由(1)可得bn=(-1
10、)nan=(-1)n(4n-3),
當(dāng)n為偶數(shù)時(shí),
Tn=-1+5-9+13-17+…+(4n-3)=4×=2n,
當(dāng)n為奇數(shù)時(shí),n+1為偶數(shù),
Tn=Tn+1-bn+1=2(n+1)-(4n+1)=-2n+1.
綜上,Tn=
11.(20xx·北京海淀模擬)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.
[解] (1)∵Sn=2an-a1,
∴當(dāng)n≥2時(shí),Sn-1=2an-1-a1,
∴an=2an-2an-1,化為an=2an-1
11、.
由a1,a2+1,a3成等差數(shù)列得,2(a2+1)=a1+a3,
∴2(2a1+1)=a1+4a1,解得a1=2.
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為2,公比為2.
∴an=2n.
(2)∵an+1=2n+1,∴Sn==2n+1-2,Sn+1=2n+2-2.
∴bn===.
∴數(shù)列{bn}的前n項(xiàng)和
Tn=
=.
12.(20xx·山東卷)已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2.
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1,1),P2(x2,2),…,Pn+1(xn+1,n
12、+1)得到折線P1P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn.
[解] (1)設(shè)數(shù)列{xn}的公比為q,由已知知q>0.
由題意得
所以3q2-5q-2=0.
因?yàn)閝>0,所以q=2,x1=1.
因此數(shù)列{xn}的通項(xiàng)公式為xn=2n-1.
(2)過(guò)P1,P2,…,Pn+1向x軸作垂線,垂足分別為Q1,Q2,…,Qn+1.
由(1)得xn+1-xn=2n-2n-1=2n-1,
記梯形PnPn+1Qn+1Qn的面積為bn,
由題意bn=×2n-1=(2n+1)×2n-2,
所以Tn=b1+b2+…+bn
=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2,①
2Tn=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1.②
①-②得
-Tn=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=+-(2n+1)×2n-1.
所以Tn=.