高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題五 立體幾何 專題能力訓(xùn)練15 Word版含答案
《高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題五 立體幾何 專題能力訓(xùn)練15 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題五 立體幾何 專題能力訓(xùn)練15 Word版含答案(13頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 專題能力訓(xùn)練15 立體幾何中的向量方法 能力突破訓(xùn)練 1. 如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點(diǎn)G為AB的中點(diǎn),AB=BE=2. (1)求證:EG∥平面ADF; (2)求二面角O-EF-C的正弦值; (3)設(shè)H為線段AF上的點(diǎn),且AH=23HF,求直線BH和平面CEF所成角的正弦值. 2. 如圖,在四棱錐A-EFCB中,△AEF為等邊三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60,O為EF的中點(diǎn). (1)求
2、證:AO⊥BE; (2)求二面角F-AE-B的余弦值; (3)若BE⊥平面AOC,求a的值. 3. (20xx山東,理17)如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120得到的,G是DF的中點(diǎn). (1)設(shè)P是CE上的一點(diǎn),且AP⊥BE,求∠CBP的大小; (2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小. 4. 如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD的
3、中點(diǎn). (1)求證:B1E⊥AD1; (2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說明理由. 5. (20xx北京,理16)如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=6,AB=4. (1)求證:M為PB的中點(diǎn); (2)求二面角B-PD-A的大小; (3)求直線MC與平面BDP所成角的正弦值. 6. 如圖,AB是半圓O的直徑,C是半圓
4、O上除A,B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=14. (1)證明:平面ADE⊥平面ACD; (2)當(dāng)三棱錐C-ADE體積最大時(shí),求二面角D-AE-B的余弦值. 思維提升訓(xùn)練 7.如圖甲所示,BO是梯形ABCD的高,∠BAD=45,OB=BC=1,OD=3OA,現(xiàn)將梯形ABCD沿OB折起成如圖乙所示的四棱錐P-OBCD,使得PC=3,E是線段PB上一動(dòng)點(diǎn). (1)證明:DE和PC不可能垂直; (2)當(dāng)PE=2BE時(shí),求PD與平面CDE所成角的正弦值
5、. 8. 如圖,平面PAD⊥平面ABCD,四邊形ABCD為正方形,∠PAD=90,且PA=AD=2;E,F,G分別是線段PA,PD,CD的中點(diǎn). (1)求證:PB∥平面EFG. (2)求異面直線EG與BD所成的角的余弦值. (3)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離為45?若存在,求出CQ的值;若不存在,請(qǐng)說明理由. 參考答案 專題能力訓(xùn)練15 立體幾何中的向量方法 能力突破訓(xùn)練 1.解依題意,OF⊥平面ABCD,如圖,以O(shè)為原點(diǎn),分別以AD,BA,OF的方向?yàn)閤軸、
6、y軸、z軸的正方向建立空間直角坐標(biāo)系,依題意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0). (1)證明依題意,AD=(2,0,0),AF=(1,-1,2). 設(shè)n1=(x,y,z)為平面ADF的法向量, 則n1AD=0,n1AF=0,即2x=0,x-y+2z=0. 不妨設(shè)z=1,可得n1=(0,2,1), 又EG=(0,1,-2),可得EGn1=0, 又因?yàn)橹本€EG?平面ADF,所以EG∥平面ADF. (2)易證OA=(-1,1,0)為平面OEF的一個(gè)法向量.依題意
7、,EF=(1,1,0),CF=(-1,1,2).
設(shè)n2=(x,y,z)為平面CEF的法向量,
則n2EF=0,n2CF=0,即x+y=0,-x+y+2z=0.
不妨設(shè)x=1,可得n2=(1,-1,1).
因此有cos
8、721. 所以,直線BH和平面CEF所成角的正弦值為721. 2.(1)證明因?yàn)椤鰽EF是等邊三角形,O為EF的中點(diǎn), 所以AO⊥EF. 又因?yàn)槠矫鍭EF⊥平面EFCB,AO?平面AEF, 所以AO⊥平面EFCB,所以AO⊥BE. (2)解取BC中點(diǎn)G,連接OG. 由題設(shè)知EFCB是等腰梯形, 所以O(shè)G⊥EF. 由(1)知AO⊥平面EFCB, 又OG?平面EFCB, 所以O(shè)A⊥OG. 如圖建立空間直角坐標(biāo)系O-xyz,則E(a,0,0),A(0,0,3a), B(2,3(2-a),0),EA=(-a,0,3a),BE=(a-2,3(a-2),0). 設(shè)平面AEB
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場(chǎng)管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎(jiǎng)勵(lì)制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)