壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
附錄A
釆煤機自適應記憶切割
徐志鵬,王忠賓,米金鵬
摘要:針對以往的采煤機記憶切割技術在我國復雜地質條件下不適用的情況,提出了基于模糊控制理論的采煤機自適應記憶切割技術,設計出了采煤機位置、姿態(tài)定位系統(tǒng)和采煤機自適應切割模糊控制系統(tǒng)。該系統(tǒng)可以獲取采煤機任意位置處的姿態(tài)和狀態(tài)信息,自動跟蹤所記憶的切割路徑,基于模糊控制理論對是否截割到巖石進行判斷并做出最優(yōu)的處理方案。通過實驗室的路徑跟蹤實驗和西安煤礦機械有限公司的自適應調節(jié)實驗證明:該技術在實現(xiàn)采煤機記憶切割的基礎上能夠識別出滾筒到切割巖石時的異常狀態(tài),并對牽引速度和滾筒高度做自適應調節(jié),能夠滿足復雜地質條件下對采煤機的控制要求。
關鍵詞:采煤機;自適應控制;記憶切割;模糊控制
中圖分類號:TD421. 6;TP273. 4 文獻標志碼:A
采煤機的自動化控制是實現(xiàn)采煤工作面自動化遙控器在近距離操控,大量的煤塵和水霧使得操作的重點和難點,而采煤機自動化的關鍵則是滾筒的人員很難看清滾筒是否切割到巖石,僅能通過滾筒自動調高。目前國內(nèi)采煤機大多依靠人工通過紅外發(fā)出的聲音進行判別。為此,國內(nèi)外學者提出過利用y射線探測、雷達探測、紅外溫度探測、截割力分析、振動分析等方法來進行煤巖識別[1-5],但實際應 用的效果都不理想。20世紀80年代中期西德學者 首次提出了記憶割煤行程自動調高系統(tǒng),并成功應 用于美國JOY公司的7LS6型、德國Eickhoff公司的SL500型和DBT公司的EL3000型等采煤機上。該方法避免了煤巖識別這一技術難題,便于實現(xiàn)且操作簡單,但在我國采煤工作面上的應用并不理想,主要原因在于:1) 我國煤礦地質條件復雜,煤巖界面變化劇烈,所記憶的切割曲線不具有普遍性,當記憶路徑失效時,就需要對切割路徑重新進行記憶。2) 隨著我國采煤機功率的不斷增大,同時為了移架、推溜的順利進行和采煤效率的提高,較小的夾矸和斷 層均直接進行切割而不必頻繁的調節(jié)滾筒高度且頂 板和底板應盡量切割平整。因此,有必要針對我國復雜地質條件和當前煤礦生產(chǎn)需求對采煤機記憶切割技術進行研究和改進。筆者提出了基于模糊理論 的采煤機自適應記憶切割技術,既遵從記憶切割路徑以避免切割過硬巖石而導致的機械或電氣部件損壞,又盡可能少的調節(jié)滾筒高度從而保持頂板和底板的平整性。
1采煤機自適應記憶切割總體控制方案
采煤機工作過程中最主要的兩個動作是機身的橫向往復運動和搖臂的縱向升降運動,前者對應于牽引電機的轉速;后者對應于調高油缸的伸縮量。因此對采煤機的控制也主要針對與牽引電機和調高油缸。傳統(tǒng)的記憶切割技術要求采煤機切割到巖石后搖臂立即下降,以避免截割電機堵轉或截割齒斷裂。而隨著電機功率的增大和截割齒材料的改進,使得采煤機可以對一般硬度的巖石直接進行切割。 因此在本方案中,控制器根據(jù)采煤機的各項傳感數(shù)據(jù)不僅可以識別出是否切割到巖石,而且還能夠判斷出是否允許對其直接切割。對于一般硬度的巖石采取降低牽引速度強行切割的方法,如果巖石硬度過大則采取調節(jié)滾筒高度進行避讓的方法。該控制方案在采煤機機械部件和電器部件不受損傷的基礎 上,最大限度地保證了采煤效率。
采煤機自適應記憶切割總體控制流程如圖1所示,可分為3個階段:人工示教階段、自適應切割階段和人工修正階段。每個階段既相對獨立又相互聯(lián)系,如自適應切割與人工示教和人工修正都發(fā)生聯(lián)系;人工示教和人工修正共享一個數(shù)據(jù)記憶集來記錄人工操作。
圖1采煤機自適應記憶切割總體控制流程圖
人工示教由人工操控和數(shù)據(jù)記憶兩部分組成。當操作人員控制采煤機進行切割時,機載控制器每隔一段時間便會記錄下采煤機當前的位置、姿態(tài)、狀態(tài)和動作等信息。其中,位置信息是指采煤機在工作面處的空間坐標;姿態(tài)信息是指采煤機的機身傾斜角度和滾筒的空間坐標;狀態(tài)信息是指采煤機機械部件和電器部件運行的狀態(tài)參數(shù);動作信息是指操作人員對采煤機發(fā)出的控制命令。這些數(shù)據(jù)經(jīng)過處理后存儲于控制器中以指導采煤機的自動運行。顯然,機載控制器的采集頻率越大就越詳細的記錄下采煤機運行過程,但同時又會產(chǎn)生大量無用信息占用控制器的處理能力和存儲空間;而如果頻率過小,就有可能漏掉采煤機的一些重要動作。針對這一問題,本方案將控制器的采集點分為常規(guī)點和關 鍵點。常規(guī)點沿采煤機運行方向等距離分布,其間相隔1 m。關鍵點則是操作人員對采煤機發(fā)出控制命令的點,如采煤機的啟動、停止、加速、減速,搖臂的上升、下降等。關鍵點是人工示教的核心,直接反映了操作人員的操作方式和操作順序。采取常規(guī)點和關鍵點相結合進行記憶的策略,既確保了記憶質量又降低了數(shù)據(jù)量,為后續(xù)的自適應切割過程提供了保障。
自適應切割是指由機載控制器控制采煤機按照人工示教的路徑自動切割煤層。首先,機載控制器根據(jù)人工示教過程中所記憶的操作命令控制采煤機運行,在運行過程中機載控制器在每個常規(guī)點和關鍵點處將當前采集到的數(shù)據(jù)與所記憶的數(shù)據(jù)進行對比。而后,模糊控制器根據(jù)對比結果對當前的運行狀態(tài)進行判別是否切割到巖石;是否需要停機;是否需要加速或減速;是否需要上升或下降搖臂;是否需要人工干預;是否需要重新人工示教等。最后,機載控制器根據(jù)模糊控制器的判別做出相應的控制輸出,對于常規(guī)操作如加減速、升降搖臂等,可由控制器自行完成;而對于人工干預、人工示教操作,則需要向操作人員發(fā)出報警提示,請求人工介入。
人工修正是指當機載控制器遇到無法解決的故障或者無法識別的狀態(tài)時,將控制方式從自動轉換為手動,由操作人員控制采煤機進行切割。人工修正是自適應切割的有力補充,確保了在緊急情況下人工操作的優(yōu)先權。機載控制器會記錄下人工修正的操作步驟,作為關鍵點進行存儲,下次遇到類似狀況便可以自行解決。當人工修正完成后,操作人員可以將采煤機的控制方式從手動改為自動,由機載控制器根據(jù)記憶數(shù)據(jù)控制采煤機完成后續(xù)的切割任務。
2采煤機的位置和姿態(tài)定位
由上文可知,采煤機位置和姿態(tài)是自適應記憶切割中的重要信息,直接影響到采煤機的控制效果。國內(nèi)以往對于采煤機記憶切割的研究并不深入,對于采煤機位置和姿態(tài)的空間定位問題尚未有完整的 解決方案。曾有學者提出利用軸編碼器計算采煤機行走距離來進行位置定位,利用位移傳感器獲取調 高油缸的伸縮量來進行姿態(tài)定位,但得到僅是位置 和姿態(tài)的相對值而并非三維空間內(nèi)的絕對值[6-8]。 因此,解決采煤機位置和姿態(tài)定位問題是實現(xiàn)自適應切割的前提和基礎。
2.1 采煤機位置定位
要確定采煤機機身的位置最直觀的方法就是獲取其在三維空間內(nèi)的坐標值,這就需要解決以下問題,選取采煤機上某一固定點作為位置定位的特征點;定義三維坐標系;推導特征點坐標值的計算公式。
1) 特征點的選取。采煤機的機體過于龐大,因此需要在采煤機上選取一個特征點,并以此特征點的三維坐標來唯一確定采煤機的位置。本文選取采煤機行走齒輪與刮板運輸機上導軌的接觸點作為特征點進行定位計算,此時特征點的運行軌跡與刮板運輸機的導軌重合。
2) 三維坐標系的定義。初始狀態(tài)下采煤機起始位置處的特征點為系統(tǒng)原點O。重力加速度反方向為y軸正方向,重力加速度方向為y軸負方向。平行于刮板運輸機且與y軸垂直方向為x軸;面朝煤壁,向右為x軸正方向,向左為x軸負方向。垂直于xy平面且指向煤壁方向為z軸正方向,相反為z軸負方向。需要注意的是,原點是在系統(tǒng)初始狀態(tài)下設定的固定點,不隨采煤機的橫向運動或縱向運動而改變,并且原點與所對應刮板運輸機推溜受力點的聯(lián)機必須平行于yz平面。
3) 特征點坐標值的計算。如圖2所示為采煤機位置定位示意圖,實線為刮板運輸機的布置情況,實心圓點為各節(jié)刮板運輸機間的鉸接點。圖中表示的是在初始狀態(tài)下刮板運輸機從圓點經(jīng)過一次推溜后的情況,實際工作中要經(jīng)過多次推溜。設刮板運輸機共有n節(jié),每節(jié)長度為h,初始狀態(tài)下第k個鉸接 點處的坐標為(xk,yk,0),第k節(jié)與x軸的夾角為 αk,其中且n>0,。則當采煤機行程為s時
(1)
其中為商,0≤p≤h為余數(shù)。由此可知采煤機特征點位于刮板輸送機第k節(jié)上的p處。
圖2 采煤機位置定位示意圖
設采煤機起始點經(jīng)過m次推溜,每次推溜的距離推溜方向與z軸方向的夾角為βm,其中且m > 0。則經(jīng)過m次推溜后采煤機特征點的三維坐標值(x0,y0,z0)為
(2)
2.2采煤機姿態(tài)定位
采煤機的姿態(tài)信息包括機身傾角和調高油缸位移量,其中機身傾角是由刮板運輸機決定的;只有調高油缸位移量是可調的。這里采煤機的姿態(tài)定位是以滾筒空間坐標的形式給出的,因為可以綜合反映 機身傾角和調高油缸位移量;而采煤機的姿態(tài)控制是以調高油缸位移量的形式給出的,因為姿態(tài)信息中只有該項是可控的。采煤機的姿態(tài)定位是建立在 位置定位基礎上的,確定了關鍵點的坐標值后,根據(jù)機身的橫向傾角和縱向傾角確定滾筒坐標值。
1) 只考慮采煤機橫向傾角情況下根據(jù)關鍵點坐標求出滾筒的x軸和y軸坐標。如圖3所示為采煤 機調高系統(tǒng)機構簡圖在xy平面內(nèi)的投影,圖中共有 0~4五個點,第i個點的坐標用(xi,yi)表示,點2、3間線段為調高油缸的伸出量,粗實線為采煤機機身,點0為位置定位中使用的特征點。其中左圖為機身水平時的姿態(tài),右圖為機身前傾α角度時的姿態(tài),從圖中可以看出滾筒高度不僅取決于調高油缸伸出量還取決于機身的傾角。在圖3中,當機身橫向傾角為α時,根據(jù)特征點的坐標(x0,y0)可以求出固定點1、2的坐標(x1,y1)和(x2,y2)。在點1、2、3組成的三角形中,已知點1、2的坐標值及其與點3間的距離,可以由二維坐標系中兩點間距離的公式列出關于x3和y3的二元二次方程,解此方程能夠求出點3 的坐標值(x3,y3)。同理在點1、3、4組成的三角形中能夠求出點4的坐標值(x4,y4),即為滾筒的旋轉中心坐標值。
圖3采煤機姿態(tài)在xy平面內(nèi)的投影簡圖
2) 考慮采煤機縱向傾角情況下對滾筒的坐標值進行修正。設在位置定位中求得特征點坐標值為 (x0,y0,z0),采煤機機身的縱向傾角為β,上一步得 到的滾筒在xy平面內(nèi)投影坐標值為(x4',y4'),則可由坐標投影關系求得滾筒的三維坐標值(x4,y4,z4)為
(3)
3采煤機的自適應切割
自適應切割是采煤機控制部分的核心內(nèi)容,主要由路徑跟蹤和自適應調節(jié)兩大部分組成。路徑跟蹤是指在各設備工作狀態(tài)正常的前提下,盡可能的按照人工示教時所記錄的數(shù)據(jù)來復原采煤機的運行過程。自適應調節(jié)是指在路徑跟蹤過程中判斷出采煤機所處的運行狀態(tài),根據(jù)不同的情況采取相應的措施來將采煤機調節(jié)至正常工作狀態(tài)。
3.1 路徑跟蹤策略
路徑跟蹤的依據(jù)是人工示教過程中各個記憶點中的數(shù)據(jù),判斷路徑跟蹤效果的指標包括滾筒坐標和牽引速度兩部分。在未進行路徑跟蹤前,機載控制器根據(jù)當前刮板運輸機的布置情況計算出采煤機運行到每個記憶點時的機身坐標值,將其與人工示教時記憶的機身坐標值進行比較,求出機身的上升高度,并由此計算出此時滾筒應當升高的高度以及 所對應的調高油缸位移量,作為本次運行的理想值存儲至控制器中。在路徑跟蹤階段,當采煤機運行到第i個記憶點時,機載控制器會讀取第z + 1個記憶點處調高油缸位移量和機身牽引速度的理想值;根據(jù)z點與z+1點的間距計算出調高油缸的運行時 間和牽引變頻器的加速曲線。當采煤機按照這種控 制方案行駛到i + 1點時,機載控制器又會根據(jù)此時的調高油缸位移和運行速度來制定z + 1至i + 2點間的運行方案。這種控制策略在每個記憶點處都重新計算下一點的運行方案,從而消除了多點間的累計誤差,保證了路徑跟蹤的精度。
為了驗證路徑跟蹤策略的實際效果,本課題組研發(fā)了采煤機記憶切割實驗平臺,如圖4所示該平臺具有與真實采煤機相同的控制功能,可以模擬采煤機的工作過程。作者基于該平臺進行了采煤機路 徑跟蹤效果測試。實驗所得的路徑跟蹤曲線如圖5 所示,圖中實線部分為記憶路徑,其上的實心點為記憶點,包括常規(guī)點和關鍵點;虛線部分為實際運行路徑。實驗結果表明:該路徑跟蹤策略可有效跟蹤所記憶的切割路徑,但在路徑的拐點處尚存在一定的滯后,這主要是由于調高油缸對控制命令的響應具有一定的延時性。
圖4 采煤機記憶切割實驗平臺 圖5采煤機路徑跟蹤曲線
3.2自適應調節(jié)策略
自適應調節(jié)的依據(jù)是路徑跟蹤過程中各設備的工作狀態(tài);調節(jié)的對象是采煤機的運行速度和滾筒高度。實踐證明當采煤機切割到巖石后其截割電機溫度、電流以及搖臂振動都將加大并超出正常范圍,此時應首先降低牽引速度,之后如果采煤機狀態(tài)恢復正常則直接切割巖石;如果持續(xù)降低牽引速度一段時間后采煤機狀態(tài)仍然異常則降低滾筒高度;如果持續(xù)降低滾筒高度一段時間后采煤機狀態(tài)仍無法恢復正常則向操作人員發(fā)出警報請求人工干預。 自適應調節(jié)策略強調以降低牽引速度作為應對切割巖石時產(chǎn)生的電流、振動增大等問題的首選,而不是單一的降低滾筒高度。
由于對采煤機狀態(tài)是否異常的判斷主要來自于生產(chǎn)經(jīng)驗,而且很難建立采煤機的數(shù)學模型,因此本文采用模糊控制方法來實現(xiàn)采煤機的自適應調節(jié)。模糊控制的概念是由美國加州大學教授L. A. Zadeh首先提出的,其基本思想是將操作人員的控制經(jīng)驗用具有模糊含義的語言、變量加以描述,用一組條件語句構成控制規(guī)則以及相應的模糊推理,最終通過模糊決策得到精確控制量[9-10]。模糊控制具有如下特點:1) 不需要建立被控對象的數(shù)學模型,只需掌握現(xiàn)場操作人員或有關專家經(jīng)驗、知識和數(shù)據(jù)[11-12];2) 具有較強的魯棒性,尤其適應于非線性時變、滯后系統(tǒng)的控制[13-14];3) 不用數(shù)值而用語言式的模糊變量來描述系統(tǒng),使得操作人員易于使用自然語言進行人機對話[15-16]。
結合采煤機具體情況,本模糊控制系統(tǒng)的輸入量包括截割電機電流、搖臂振動幅值兩部分。其中截割電機電流C的論域為巨[0,2],搖臂振動幅值V論域為巨[0,3],模糊控制輸出量O的論域為[-2,2],其模糊子集均為{NB,NM,ZO,PM,PB },分別對應“負大”、“負中”、“零”、“正中”、“正大”。該系統(tǒng)的模糊控制規(guī)則如表1所示。
表1 自適應調節(jié)模糊控制規(guī)則度
VOC
NB
NM
ZO
PM
PB
NB
PB
PB
PB
PB
NB
NM
PB
PM
PM
NM
NB
ZO
PB
PM
ZO
NM
NB
PM
PB
NM
NM
NM
NB
PB
NB
NB
NB
NB
NB
其中,C,V,O中每個模糊子集的取值都需要結合操作人員和生產(chǎn)廠家的經(jīng)驗來確定。本系統(tǒng)結合西安煤機廠MU900/2210-WD型電牽引采煤機的相關參數(shù)和設計人員的經(jīng)驗總結出了每個模糊子集的取值及其所對應的控制操作,如表2-4所示。其中截割電流的模糊子集ZO取值為1. 00表示正常工作時的電流,NM取值為0. 90表示正常工作電流的0. 90倍,其他取值同理。最終的模糊控制輸出如圖6所示。
表 2 截割電機電流的模糊子集
模糊子集
NB
NM
ZO
PM
PB
取值
0.80
0.90
1.00
1.30
2.00
控制操作
報警
加速
/減速/降低滾筒 停車
表 3 振動幅值的模糊子集
模糊子集
NB
NM
ZO
PM
PB
取值
0.50
0.80
1.00
1.80
3.00
控制操作
報警
加速
/減速/降低滾筒 停車
表 4 控制輸出的模糊子集
模糊子集
NB
NM
ZO
PM
PB
取值
-2.00
-1.00
0
1.00
2.00
控制操作
停車 減速/降低滾筒 /
加速
報警
為了驗證采煤機自適應調節(jié)策略的控制效果,作者在西安煤機廠的采煤機工況參數(shù)模擬實驗臺上進行了仿真測試。如圖7所示,該實驗臺可以模擬采煤機在不同負載下的工況參數(shù)。實驗過程中系統(tǒng)模擬出采煤機的截割電機電流、搖臂振動幅值,而后將其輸入到模糊控制器中,模糊控制器根據(jù)模糊判別規(guī)則控制采煤機的牽引速度。如圖8所示,當截割電機電流和搖臂振動幅值急速增加時模糊控制器控制牽引電機減速;隨著牽引速度的降低截割電機電流和搖臂振動幅值均有所下降;當截割電機電流和搖臂振動幅值趨于正常值時模糊控制器不再降低牽引電機速度,此時牽引速度趨于平穩(wěn)。
圖6 采煤機模糊控制輸出圖 圖7 采煤機工況參數(shù)模擬實驗臺
4 結論
作為綜采工作而的關鍵設備,采煤機的自動化是實現(xiàn)綜采工作而自動化和少人化的重點和難點。記憶切割技術是被實踐證明最有效的采煤機自動控制方法,但在我國復雜的地質條件下煤巖界而變化劇烈,僅依靠記憶切割技術并不適用。針對這一問題,筆者提出了
基于模糊控制理論的采煤機自適應記憶切割技術,設計出了采煤機位置、姿態(tài)空間定位系統(tǒng)和自適應切割模糊控制系統(tǒng)。在保證采煤機工作狀態(tài)正常的前提下,該系統(tǒng)可以避免搖臂的頻繁升降,確保了頂板、底板的平整性并提高了采煤效率。目前該系統(tǒng)在MU900/2210 WD型電牽引采煤機1:6樣機模型構成的實驗平臺上進行了路徑跟蹤測試,證明了路徑跟蹤策略的可行性。并且在西安煤礦機械有限公司的采煤機工況模擬實驗臺上進行了自適應調節(jié)測試,實驗數(shù)據(jù)表明:模糊控制系統(tǒng)可以識別采煤機的異常工作狀態(tài),并采取相應的控制方法將其恢復至正常狀態(tài)。接下來將進行采煤工作而的現(xiàn)場實驗,并根據(jù)實驗結果對系統(tǒng)做進一步的改進和完善。
圖8 采煤機自適應調節(jié)控制效果
附錄B
Modelling and Simulation on Shearer
Self-adaptive Memory Cutting
Xu Zhi-penga, Wang Zhong-binb
Abstract:Automation of shearer is the key point to realize the fully mechanized coal face. According to the complicated geological condition in our country, this paper built a shearer self-adaptive memory cutting model based on fuzzy control theory. This model contains shearer positioning system and fuzzy control system which can get the message of shearer's position and attitude at any point, trace the memorial cutting path automatically, judge whether the shearer cuts rocks based on fuzzy control theory and find the optimal scheme. The author simulated the working environment in laboratory and factory, did experiment to test whether the model can adapt complicated geological condition.
Key words: shearer; fuzzy control; modelling; simulation
1. Control model of shearer self-adaptive memory cutting
For the shearer there are two important movements when it working: the horizontal reciprocating motion and the longitudinal direction of the rocker arm movements. The former corresponds to the speed of traction motor, and the latter corresponds to the telescopic amount of the height adjusting oil cylinder. So the mining machine control is mainly determined by the traction motor and the height adjusting oil cylinder. Conventional memory cutting technology requirements of shearer arm dropping immediately when cutting to the rock, so as to avoid the cutting motor blocking or cutting tooth fracture. As the electric power increases and the cutting tooth material improvement, it makes the shearer can be cut directly on the general hardness ofrock. So in this scheme, the controller can not only identify whether or not cutting into the rock, but also able to determine whether to allow the direct cutting according to the coal mining machine of the sensing data. The control model of shearer self-adaptive memory cutting is shown in Fig.l , which can be divided into three stages: artificial teaching stage, the adaptive cutting stage and manual correction phase. Each stage is a relatively independent and interrelated.
Fig. l Control model of shearer self-adaptive memory cutting
2. Position and attitude model of shearer
Shearer position and attitude is the important information of self-adaptive memory cutting, and affect the mining machine control effect directly. Some scholars have proposed that we can use shaft encoders calculate the walking distance to locate the coal mining location, use isplacement sensor get the high oil cylinder's expansion amount for attitude positioning. However, in this method as mentioned in reference [1] and [2], we can only get the relative value of the position and attitude rather than the absolute value of three-dimensional. Thus, the solution of shearer position and attitude positioning is the prerequisite and basis for achieving the daptive cutting.
Fig. 2 Model of shearer position
Fig. 3 Model of shearer attitude
The most intuitive way to determine the position of shearer body is to get its coordinates in 3D space,and this requires solving the following problems: Select a fixed point on the shearer as a feature point for the location positioning; defined three-dimensional coordinate system; derived calculation formula of feature point's coordinates. Fig 2 shows the model of shearer position. The solid line is the arrangement of the scraper conveyor; solid dots are the hinge point of each ection between the scraper conveyors.
In the case of only considering the coal mining machine horizontal angle, we can get the X axis and Y axis according to key point coordinates of a drum. Fig.3 shows the projection of the shearer hydraulic system schematic diagram of mechanism in XY plane. Fig.3 have a total of five points(0-4), the coordinates of the number i point is (xi,yi), that the line segment between points 2 and 3 is protrusion length of the cylinder, thick solid line is shearer body, Point 0 is the feature points used in location positioning. In Fig 3, left figure is the body's level attitude, right figure is the body attitude forwarding angle α.
3. Simulation of shearer self-adaptive memory cutting
Shearer self-adaptive memory cutting is the key point of shearer control, which contains path tracking and adaptive adjustment. Path tracking refers to that we can recover the coal mining process with manual data recorded when the operation as much as possible under the premise of the normal working state, Adaptive adjustment refers to that we can determine the shearer operating state in the process of path tracking, and take appropriate measures to adjust shearer to normal working condition depending on the situation.
3.1 Simulation of path tracking
In order to verify the practical effect of the path tracking strategy, the group developed a experiment platform of shearers memory cutting. Fig.4 shows that the platform has the same control as real shearer, and can simulate the working process. Author had a path tracking test results based on the platform of the shearer. Experimental curve from the path tracking shown in Fig.S, solid line portion is the path memory, and its solid points are memory points, including conventional point and critical point, dashed part is the actual operation path. The results show that: the path tracking strategy can be effectively tracked by the memory of the cutting path, but the inflection point in the path are still some lag, which was mainly due to that the response of height adjusting oil cylinder to the command control has a certain latency.
Fig. 4 Experimental platform of memory cutting Fig. 5 Path tracing curve of the shearer
3.2 Simulation of adaptive adjustment
Because of the judgment of state about shearer whether is abnormal mainly from production experience it is difficult to establish mathematical model of shearer, so this paper adopts fuzzy control method to realize shearer's self-adaptive regulation strategies. Concept of fuzzy control was firstly proposed by L.A.Zadeh professor at University of California. Its basic idea is to describe the operator's control experience with a language and variables having vague meaning. The control rules and corresponding fuzzy reasoning are constituted by a set of conditional statement. Finally we get accurate control variable through fuzzy decision. Fuzzy control as mentioned in references [3-6] has the following characteristics: there is no need to establish mathematical model of controlled object, just master knowledge, experience and data of operators or concerned expert; it has strong robustness especially apply to control of nonlinear time-varying and delay system; we describe the system not with numerical but fuzzy variable of language allowing it's easy to achieve man-machine interaction with natural language for operators. Combined with the specific circumstances, the input of the fuzzy control system including: cutting motor current and vibration amplitude of rocker arm. The universe of discourse of cutting motor current C is [0,2]; the universe of discourse of vibration amplitude of rocker arm V is [0,3]; the universe of discourse of output of fuzzy control. Theirs fuzzy subsets are {NB, NM, ZO, PM, PB{ corresponding to "negative big", "negative medium", "zero", "positive medium", "positive big". The system's fuzzy control rules are shown in table 1. The value of each fuzzy subset in C, V, O is determined by combining the experience of both operators and manufacturers.
Tab. 1 Fuzzy control rules of adaptive adjustment
VOC
NB
NM
ZO
PM
PB
NB
PB
PB
PB
PB
NB
NM
PB
PM
PM
NM
NB
ZO
PB
PM
ZO
NM
NB
PM
PB
NM
NM
NM
NB
PB
NB
NB
NB
NB
NB
The authors have done the test on a simulation experiment table in Xi'an Coal mining Machinery Co, Ltd. As shown in Fig 5 this experiment table can simulate shearer working parameters at different loads. Cutting motor current and vibration amplitude of rocker arm are simulating by this system during the experiment, and then we put them into the fuzzy controller. Fuzzy controller control the traction speed of shearer based on fuzzy judgment rules. As shown in Fig.6 when cutting motor current and vibration amplitude of rocker arm are rapidly increasing the speed of traction motor is reduced controlled by fuzzy controller; with the reduction in traction speed cutting motor current and vibration amplitude of rocker arm are decreased; when the value of cutting motor current and vibration amplitude of rocker arm tend to be normal fuzzy controller no longer reduce the speed of traction motor, at this time the value of traction speed is tend to stabilized.
Fig. 5 Experimental platform of shearer adaptive adjustment Fig. 6 Effect of shearer adaptive adjustment
4. Conclusion
Memory cutting has been proven the most effectively for shearer's automatic control. In China
geological conditions is very complex and coal-rock interface change rapidly so depending only on memory cutting technology is not applicable. In order to solve this problem, the author put forward a shearer self-adaptive memory cutting model based on fuzzy control theory, which contains the position model, attitude model and the fuzzy control model. At present, the path tracking was tested in experimental platform constituted by 1:6 prototype model of MG900/2210-WD AC electric haulage shearer. And the author has demonstrated the feasibility of the path tracking strategy and conducted a self-adaptive test on shearer's working parameters simulation experiment table in Xi'an Coal mining Machinery Co., Ltd. Next there will be a field experiment in coalface and further improvement will be done on this model according to the results.
References
[1] F. Xinqiu, H. Jie, Z. Bin, et al., Self-positioning system of the shearer in unmanned workface. Journal of Xi'an University of Science and Technology, 28 (2), 2008, p. 349-353
[2] X. Huguo, "Principle and application of shearer position monitoring device," Mining&Proce- ssing Equipment, 38(11), 2007, p25-27.
[3] C. Kaiyuan, Z. Lei, Fuzzy reasoning as a control problem, Fuzzy Systems, 16 (3), 2008, p. 600-614
[4] Laurent Foulloy, Sylvie Galichet, Fuzzy control with fuzzy inputs, Fuzzy Systems, 11 (4),2003, p. 437-449
[5] Rodolfo E. Haber, Jose R. Alique, Fuzzy logic-based torque control system for milling process optimization, Systems Man and Cybernetics, 37 (5), 2007, p. 941-950
[6] H.K. Lam, L.D. Seneviratne, Tracking control of sampled-data fuzzy-model-based control systems, Control Theory and Applications, 3 (1), 2009, p. 56-57
- 12 -