《精修版貴州省貴陽市九年級數(shù)學(xué)競賽講座 04第四講 明快簡捷—構(gòu)造方程的妙用》由會員分享,可在線閱讀,更多相關(guān)《精修版貴州省貴陽市九年級數(shù)學(xué)競賽講座 04第四講 明快簡捷—構(gòu)造方程的妙用(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
有些數(shù)學(xué)問題雖然表面與一元二次方程無關(guān),但是如果我們能構(gòu)造一元二次方程,那么就能運(yùn)用一元二次方程豐富的知識與方法輔助解題,構(gòu)造一元二次方程的常用方法是:
1.利用根的定義構(gòu)造
當(dāng)已知等式具有相同的結(jié)構(gòu),就可把某兩個變元看成是關(guān)于某個字母的一元二次方程的兩根.
2.利用韋達(dá)定理逆定理構(gòu)造
若問題中有形如,的關(guān)系式時,則、可看作方程的兩實根.
3.確定主元構(gòu)造
對于含有多個變元的等式,可以將等式整理為關(guān)于某個字母的一元二次方程.
成功的構(gòu)造是建
2、立在敏銳的觀察、恰當(dāng)?shù)淖冃?、廣泛的聯(lián)想的基礎(chǔ)之上的;成功的構(gòu)造能收到明快簡捷、出奇制勝的效果.
注: 許多數(shù)學(xué)問題表面上看難以求解,但如果我們創(chuàng)造性地運(yùn)用已知條件,以已知條件為素材,以所求結(jié)論為方向,有效地運(yùn)用數(shù)學(xué)知識,構(gòu)造出一種輔助問題及其數(shù)學(xué)形式,就能使問題在新的形式下獲得簡解,這就是解題中的“構(gòu)造”策略,構(gòu)造圖形,構(gòu)造方程、構(gòu)造函數(shù)、構(gòu)造反例是常用構(gòu)造方法.
【例題求解】
【例1】 已知、是正整數(shù),并且,,則 .
思路點撥 ,變形題設(shè)條件,可視、為某個一元二次方程
3、兩根,這樣問題可從整體上獲得簡解.
【例2】 若,且有及,則的值是( )
A. B. C. D.
思路點撥 第二個方程可變形為,這樣兩個方程具有相同的結(jié)構(gòu),從利用定義構(gòu)造方程入手.
【例3】 已知實數(shù)、滿足,且,求的取值范圍.
思路點撥 由兩個等式可求出、的表達(dá)式,這樣既可以從配方法入手,又能從構(gòu)造方程的角度去探索,有較大的思維空間.
4、
【例4】 已知實數(shù)、、滿足,.
(1)求、、中最大者的最小值;
(2)求的最小值.
思路點撥 不妨設(shè)a≥b,a≥c,由條件得,.構(gòu)造以b、c為實根的一元二次方程,通過△≥0探求的取值范圍,并以此為基礎(chǔ)去解(2).
注: 構(gòu)造一元二次方程,在問題有解的前提下,運(yùn)用判別式△≥0,建立含參數(shù)的不等式,
縮小范圍逼近求解,在求字母的取值范圍,求最值等方面有廣泛的應(yīng)用.
【例5】 試求出這樣的四位數(shù),它的前兩位數(shù)字與后兩位數(shù)字分別組成的二位數(shù)之和的平方,恰好等于這個四位數(shù). (2003年全國初中數(shù)學(xué)聯(lián)賽試題
5、)
思路點撥 設(shè)前后兩個二位數(shù)分別為,,則有,將此方程整理成關(guān)于(或)的一元二次方程,在方程有解的前提下,運(yùn)用判別式確定 (或)的取值范圍.
學(xué)歷訓(xùn)練
1.若方程的兩個實數(shù)根的倒數(shù)和是,則的取值范圍是 .
2.如圖,在Rt△ABC中,斜邊AB=5,CD⊥AB,已知BC、AC是一元二次方程的兩個根,則m的值是 .
3.已知、滿足,,則= .
4.已知,,,則的值為( )
A.2 B.-2 C.-1 D. 0
5.已知梯形ABCD的對角線AC與BD相交于點O
6、,若S△AOB=4,S△COD=9,則四邊形ABCD的面積S的最小值為( )
A.21 B. 25 C.26 D. 36
6.如圖,菱形A6CD的邊長是5,兩條對角線交于O點,且AO、BO的長分別是關(guān)于的方程的根,則m的值為( )
A.一3 B.5 C.5或一3 n一5或3
7.已知,,其中、為實數(shù),求的值.
8.已知和是正整數(shù),并且滿足條件,,求的值.
9.已知,,其中m、n
7、為實數(shù),則= .
10.如果、、為互不相等的實數(shù),且滿足關(guān)系式與,那么的取值范圍是 .
11.已知,則= ,= .;
12.如圖,在Rt△ABC中,∠ACB=90°,AC=b,AB=c,若D、E分別是AB和AB延長線上的兩點,BD=BC,CE⊥CD,則以AD和AE的長為根的一元二次方程是 .
13.已知、、均為實數(shù),且,,求的最小值.
14.設(shè)實數(shù)、、滿足,求的取值范圍.
15.如圖,梯形ABCD中,AD∥BC,AD=AB,,梯形的高AE=,且.
(1)求∠B的度數(shù);
(2)設(shè)點M為梯形對角線AC上一點,DM的延長線與BC相交于點F,當(dāng),求作以CF、DF的長為根的一元二次方程.
16.如圖,已知△ABC和平行于BC的直線DE,且△BDE的面積等于定值,那么當(dāng)與△BDE之間滿足什么關(guān)系時,存在直線DE,有幾條?
參考答案
最新精品資料