《高中數(shù)學(xué)蘇教版必修4學(xué)業(yè)分層測(cè)評(píng):第一章 三角函數(shù)1.3.2.3 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)蘇教版必修4學(xué)業(yè)分層測(cè)評(píng):第一章 三角函數(shù)1.3.2.3 Word版含解析(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料
學(xué)業(yè)分層測(cè)評(píng)(十) 正切函數(shù)的圖象與性質(zhì)
(建議用時(shí):45分鐘)
學(xué)業(yè)達(dá)標(biāo)]
一、填空題
1.下列正確命題的序號(hào)為________.
①y=tan x為增函數(shù);
②y=tan(ωx+φ)(ω>0)的最小正周期為;
③在x∈-π,π]上y=tan x是奇函數(shù);
④在上y=tan x的最大值是1,最小值為-1.
【解析】 函數(shù)y=tan x在定義域內(nèi)不具有單調(diào)性,故①錯(cuò)誤;函數(shù)y=tan(ωx+φ)(ω>0)的最小正周期為,故②錯(cuò)誤;當(dāng)x=-,時(shí),y=tan x無意義,故③錯(cuò)誤;由正切函數(shù)的圖象可知④正確.
【
2、答案】?、?
2.比較大?。簍an ________tan .
【解析】 tan =tan=tan .
∵y=tan x在上是增函數(shù)且0<<<,
∴tan <tan ,即tan <tan .
【答案】?。?
3.函數(shù)f(x)=的定義域?yàn)開_______.
【解析】 函數(shù)有意義,則
∴x≠且x≠+,∴x≠,k∈Z.
【答案】
4.函數(shù)y=6tan的對(duì)稱中心為________.
【解析】 y=6tan
=-6tan,
由6x-=,k∈Z得x=+,k∈Z,
故對(duì)稱中心為,k∈Z.
【答案】 (k∈Z)
5.函數(shù)y=的值域?yàn)開_______.
【解析】 ∵-≤x≤且x≠
3、0,
∴-1≤tan x≤1且tan x≠0,
∴≥1或≤-1,
故所求函數(shù)的值域?yàn)?-∞,-1]∪1,+∞).
【答案】 (-∞,-1]∪1,+∞)
6.函數(shù)y=3tan的最小正周期是,則ω=________.
【解析】 由=,可知ω=2.
【答案】 2
7.已知函數(shù)y=tan ωx在內(nèi)是減函數(shù),則ω的取值范圍是________.
【解析】 ∵y=tan ωx在內(nèi)是減函數(shù),
∴T=≥π,
∴|ω|≤1.
∵y=tan x在內(nèi)為增函數(shù),
∴ω<0,∴-1≤ω<0.
【答案】?。?≤ω<0
8.若f(x)=tan,試比較f(-1),f(0),f(1),并按從小到大的
4、順序排列:________.
【解析】 ∵f(x)=tan在上單調(diào)遞增,
且T=π,∴f(1)=f(1-π),
又-<1-π<-1<0<,
∴f(1-π)<f(-1)<f(0),即f(1)<f(-1)<f(0).
【答案】 f(1)<f(-1)<f(0)
二、解答題
9.設(shè)函數(shù)f(x)=tan.
(1)求函數(shù)f(x)的定義域、周期和單調(diào)區(qū)間;
(2)求不等式-1≤f(x)≤的解集.
【導(dǎo)學(xué)號(hào):06460029】
【解】 (1)由-≠+kπ,k∈Z得x≠+2kπ,
∴f(x)的定義域是.
∵ω=,∴周期T==2π.
由-+kπ<-<+kπ,k∈Z得
-+2kπ
5、<+2kπ,k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是-+2kπ,+2kπ(k∈Z).
(2)由-1≤tan≤,得-+kπ≤-≤+kπ,k∈Z,解得+2kπ≤x≤+2kπ,k∈Z,
∴不等式-1≤f(x)≤的解集是
.
10.設(shè)函數(shù)f(x)=tan(ωx+φ),已知函數(shù)y=f(x)的圖象與x軸相鄰兩交點(diǎn)的距離為,且圖象關(guān)于點(diǎn)M對(duì)稱,求f(x)的解析式.
【解】 由題意可知,函數(shù)f(x)的最小正周期T=,即=,∴ω=2,
從而f(x)=tan(2x+φ).
∵函數(shù)y=f(x)的圖象關(guān)于點(diǎn)M對(duì)稱,
∴2+φ=π,k∈Z,
即φ=+(k∈Z).
∵0<φ<,∴φ只能取.
故f(
6、x)=tan.
能力提升]
1.已知函數(shù)y=,則下列說法中:①周期是π且有一條對(duì)稱軸x=0;②周期是2π且有一條對(duì)稱軸x=0;③周期是2π且有一條對(duì)稱軸x=π;④非周期函數(shù)但有無數(shù)條對(duì)稱軸.
上述結(jié)論正確的有________(填以上所有正確的結(jié)論的序號(hào)).
【解析】 如圖是函數(shù)的圖象,由圖象可知函數(shù)周期為2π,對(duì)稱軸為x=kπ(k∈Z).
【答案】?、冖?
2.函數(shù)f(x)=tan ωx(ω>0)的圖象相鄰的兩支截直線y=所得線段長(zhǎng)為,則f的值是________.
【解析】 T=,∴=,∴ω=4,∴f(x)=tan 4x,∴f=0.
【答案】 0
3.函數(shù)y=tan x+s
7、in x-|tan x-sin x|在區(qū)間內(nèi)的圖象是________.(只填相應(yīng)序號(hào))
圖136
【解析】 當(dāng)<x<π時(shí),tan x<sin x,y=2tan x<0;
當(dāng)x=π時(shí),y=0;當(dāng)π<x<π時(shí),
tan x>sin x,y=2sin x.
故填④.
【答案】 ④
4.已知f(x)=x2+2xtan θ-1,x∈-1,],其中θ∈.求θ的取值范圍,使y=f(x)在區(qū)間-1,]上是單調(diào)函數(shù).
【解】 函數(shù)f(x)=(x+tan θ)2-1-tan2θ的圖象的對(duì)稱軸為直線x=-tan θ.
∵y=f(x)在-1,]上是單調(diào)函數(shù),
∴-tan θ≤-1或-tan θ≥,即tan θ≥1或tan θ≤-.
因此,θ角的取值范圍是∪1.3.3 函數(shù)y=Asin(ωx+φ)的圖象