秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

Copula模型在股票投資組合中的應(yīng)用研究金融學(xué)專業(yè)

上傳人:文*** 文檔編號(hào):46374716 上傳時(shí)間:2021-12-13 格式:DOC 頁(yè)數(shù):29 大?。?08KB
收藏 版權(quán)申訴 舉報(bào) 下載
Copula模型在股票投資組合中的應(yīng)用研究金融學(xué)專業(yè)_第1頁(yè)
第1頁(yè) / 共29頁(yè)
Copula模型在股票投資組合中的應(yīng)用研究金融學(xué)專業(yè)_第2頁(yè)
第2頁(yè) / 共29頁(yè)
Copula模型在股票投資組合中的應(yīng)用研究金融學(xué)專業(yè)_第3頁(yè)
第3頁(yè) / 共29頁(yè)

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《Copula模型在股票投資組合中的應(yīng)用研究金融學(xué)專業(yè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《Copula模型在股票投資組合中的應(yīng)用研究金融學(xué)專業(yè)(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、“Copula模型在股票投資組合中的應(yīng)用研究” 文獻(xiàn)綜述 一、引 言 Copula是一種估計(jì)隨機(jī)變量之間相依關(guān)系的連接函數(shù)。與傳統(tǒng)的相關(guān)性分析方法相比,Copula函數(shù)能更全面地度量變量之間復(fù)雜的相關(guān)結(jié)構(gòu)。當(dāng)今市場(chǎng),金融資產(chǎn)之間的相關(guān)性變得越來(lái)越復(fù)雜,傳統(tǒng)的線性相關(guān)以及誤差對(duì)稱的模型已難以準(zhǔn)確反映其風(fēng)險(xiǎn)的相關(guān)信息;另外,金融風(fēng)險(xiǎn)管理的范圍已不僅僅是針對(duì)單個(gè)金融資產(chǎn)或者資產(chǎn)組合的收益風(fēng)險(xiǎn),而是拓展到了包括不同市場(chǎng)、不同種類金融風(fēng)險(xiǎn)的綜合管理。因此,在這種背景下需要一種新的相關(guān)性描述方法來(lái)應(yīng)對(duì)日趨復(fù)雜的風(fēng)險(xiǎn)管理問題。而copula則是在此時(shí)脫穎而出,非常適合于投資組合與風(fēng)險(xiǎn)管理。本

2、文圍繞這國(guó)內(nèi)外對(duì)于這方面的研究,對(duì)于具有代表性的觀點(diǎn)和意見進(jìn)行了梳理和綜述,在此基礎(chǔ)上進(jìn)行的評(píng)述。 二、國(guó)內(nèi)外研究現(xiàn)狀 1、 現(xiàn)代投資組合理論的發(fā)展及面臨的問題 20 世紀(jì) 30 年代,Kegnes 和 Hicks 首先提出了“風(fēng)險(xiǎn)補(bǔ)償”的概念,認(rèn)為應(yīng)該對(duì)金融資產(chǎn)收益的不確定性給予相應(yīng)的風(fēng)險(xiǎn)補(bǔ)償。1952 年,Markowitz 在“風(fēng)險(xiǎn)補(bǔ)償”概念的基礎(chǔ)上提出了“均值-方差”模型,標(biāo)志著現(xiàn)代投資組合理論的開端?!熬?方差”模型使用金融資產(chǎn)收益率的方差作為風(fēng)險(xiǎn)的度量指標(biāo),首次對(duì)風(fēng)險(xiǎn)進(jìn)行了量化。該模型同時(shí)還基于金融資產(chǎn)之間的線性相關(guān)性研究了資金在投資組合中的最優(yōu)化配置問題。1964

3、年,Markowitz 的學(xué)生 William F. Sharp 和Lintner、Mossion 三人幾乎同時(shí)獨(dú)立提出了資本資產(chǎn)定價(jià)模型(CAPM)。該模型同樣以金融資產(chǎn)線性相關(guān)性為基礎(chǔ),認(rèn)為當(dāng)投資組合中的股票個(gè)數(shù)足夠多時(shí),其非系統(tǒng)性風(fēng)險(xiǎn)將完全被分散,因此只需要對(duì)投資組合中的系統(tǒng)性風(fēng)險(xiǎn)給予風(fēng)險(xiǎn)補(bǔ)償。1976 年,Stephen Ross 創(chuàng)造性的在 CAPM 的基礎(chǔ)上提出了套利定價(jià)理論(APT),認(rèn)為金融資產(chǎn)收益率與一組影響因子線性相關(guān),進(jìn)一步豐富了現(xiàn)代投資組合理論。 由于發(fā)現(xiàn)在實(shí)證研究中以上模型與市場(chǎng)的實(shí)際情況并不完全相符,近年來(lái)很多學(xué)者針對(duì)現(xiàn)有投資組合模型假設(shè)中的不合理性提出了多種修正

4、模型。例如Black(1972)提出的零貝塔 CAPM 模型、Merton(1973)提出的動(dòng)態(tài)跨期 CAPM模型(ICAPM)、Breeden(1979)提出的基于消費(fèi)的 CAPM 模型(CCAPM)、Fama 等(1993)提出的三因子模型以及 Holmstrom 等(2001)提出的基于流動(dòng)性資產(chǎn)的資產(chǎn)定價(jià)模型(LAPM)等等。以上的修正模型放寬了傳統(tǒng)資產(chǎn)定價(jià)模型的假設(shè)條件,對(duì)現(xiàn)代投資組合理論作了進(jìn)一步的完善。 何榮天(2003)提出基于VaR調(diào)整的投資組合保險(xiǎn)策略,即根據(jù)無(wú)風(fēng)險(xiǎn)資產(chǎn)的收益能彌補(bǔ)分配在風(fēng)險(xiǎn)性資產(chǎn)的風(fēng)險(xiǎn)值(VaR)來(lái)進(jìn)行相應(yīng)的資產(chǎn)分配,采用ta-garch模型來(lái)估計(jì)不斷變

5、化的VaR值,根據(jù)收益風(fēng)險(xiǎn)的對(duì)照關(guān)系,來(lái)進(jìn)行相應(yīng)資產(chǎn)調(diào)整。實(shí)證顯示,該策略不僅起到了投資保險(xiǎn)功能,同時(shí)還有較低的市場(chǎng)風(fēng)險(xiǎn),獲得比較理想的收益,而且基于VaR的特性,動(dòng)態(tài)測(cè)定風(fēng)險(xiǎn)性資產(chǎn)面臨的風(fēng)險(xiǎn)值,更符合機(jī)構(gòu)投資者的需求,也具有很好的操作性。 可以看到,以上所有的投資組合模型都是以金融資產(chǎn)的線性相關(guān)性為基礎(chǔ)的,當(dāng)金融資產(chǎn)收益率分布滿足正態(tài)性假設(shè)時(shí)這種線性相關(guān)系數(shù)可以較好地描述變量間的相依關(guān)系。然而,近年來(lái)研究者發(fā)現(xiàn)金融資產(chǎn)收益率分布通常具有“尖峰厚尾”的特點(diǎn),并不適合用正態(tài)分布來(lái)擬合。此外,金融資產(chǎn)中存在著大量非線性關(guān)系,而傳統(tǒng)的線性相關(guān)系數(shù)則對(duì)此無(wú)能為力。最后,由于線性相關(guān)系數(shù)無(wú)法全面地刻畫

6、隨機(jī)變量之間的相關(guān)結(jié)構(gòu),而以多元正態(tài)分布作為聯(lián)合分布的假設(shè)在實(shí)證分析中又得不到支持(Embrechts 等 2002),使得金融資產(chǎn)的相關(guān)關(guān)系一直無(wú)法得到全面地描述。因此,考慮到以上的種種問題,人們需要使用一種新的方法來(lái)研究金融資產(chǎn)間的相依性,而 Copula 方法的出現(xiàn)正填補(bǔ)了這項(xiàng)空白。 2、 Copula 方法在金融風(fēng)險(xiǎn)管理中的應(yīng)用 Copula 方法是一種能夠通過數(shù)據(jù)和單個(gè)變量的邊緣分布來(lái)近似構(gòu)造多個(gè)變量聯(lián)合分布的一種數(shù)學(xué)方法,最早由 Sklar 于 1959 年提出。與線性相關(guān)系數(shù)相比,Copula 函數(shù)能夠更加全面的描述隨機(jī)變量之間的相依性。1999 年,Embrechts等人首

7、次將 Copula 理論引入了金融領(lǐng)域,將金融資產(chǎn)相關(guān)性分析推向了一個(gè)新的階段。學(xué)者們運(yùn)用該方法在對(duì)股票、匯率、期貨等金融市場(chǎng)的研究中取得了較好的效果。Patton 等(2001)將 Copula 方法用于匯率市場(chǎng),研究了日元和英鎊對(duì)美元匯率之間的相關(guān)性。Romano(2002)使用 Copula 方法研究了意大利股票市場(chǎng)的相關(guān)性。Fantazzini(2003)對(duì)美國(guó)期貨市場(chǎng)使用混合 Copula 模型進(jìn)行了相關(guān)性研究。此外,隨著 VaR(Value at Risk)作為一種新的風(fēng)險(xiǎn)度量方法開始被投資者廣泛接受,Copula 方法用于構(gòu)建投資組合以及進(jìn)行金融風(fēng)險(xiǎn)管理的優(yōu)勢(shì)越來(lái)越明顯。研究者可

8、以方便地由金融資產(chǎn)的邊緣分布和 Copula 方法來(lái)近似估計(jì)其聯(lián)合分布,進(jìn)而計(jì)算出投資組合的 VaR 值。如 Embrechts 等(2003)總結(jié)了 Copula 方法在金融風(fēng)險(xiǎn)管理中的應(yīng)用。Embrechts 等(2006)以 VaR 為風(fēng)險(xiǎn)度量使用 Copula 方法計(jì)算了投資組合的風(fēng)險(xiǎn)值。吳振翔等(2006)基于Copula-GARCH 模型對(duì)股票市場(chǎng)的投資組合風(fēng)險(xiǎn)進(jìn)行了分析。 3 Copula 方法中的模型選擇和參數(shù)估計(jì)問題 同線性相關(guān)系數(shù)相比,Copula 方法不但可以深入地度量隨機(jī)變量之間的相依關(guān)系,而且可以用來(lái)建立隨機(jī)向量的多元統(tǒng)計(jì)模型,使得多元統(tǒng)計(jì)分析不再依賴于多元正態(tài)等

9、已知分布假設(shè)。其主要思想是將隨機(jī)變量的邊緣分布同它們之間的相依結(jié)構(gòu)分開研究,即首先根據(jù)不同的樣本特征來(lái)選擇合適的邊緣分布函數(shù)對(duì)其進(jìn)行擬合,然后再選用合適的 Copula 函數(shù)來(lái)將各個(gè)邊緣分布“連接”成聯(lián)合分布。從這一過程可以看到,不同的邊緣分布函數(shù)以及 Copula 函數(shù)的選擇將直接影響到整個(gè)相關(guān)性模型的擬合結(jié)果。在邊緣分布的選擇中,以最常見的金融資產(chǎn)收益率樣本為例,目前比較常見的 ARCH 類模型簇和 SV 模型簇各有優(yōu)劣,需要根據(jù)實(shí)際樣本情況加以選擇而不能簡(jiǎn)單套用。事實(shí)上,收益率作為一種最常見的金融隨機(jī)變量樣本其分布的擬合技術(shù)也已經(jīng)比較成熟。我們?cè)谔幚硪恍┬鲁霈F(xiàn)的金融問題時(shí)往往會(huì)遇到一些分

10、布比較復(fù)雜的金融變量,這時(shí)如何根據(jù)樣本數(shù)據(jù)的分布特征來(lái)選擇合適的模型擬合就顯得尤為重要。此外,Copula 函數(shù)的選擇是決定相關(guān)性模型擬合效果的另一個(gè)重點(diǎn),不同類型的 Copula 適合描述的相關(guān)結(jié)構(gòu)也不同。關(guān)于這一點(diǎn),Roberto De Matteis(2001)曾對(duì) Copula 函數(shù)的選擇問題作了一個(gè)很好的綜述。Fermanian(2005)研究了 Copula 的擬合優(yōu)度檢驗(yàn)問題。Chen 等(2005)使用似然比檢驗(yàn)方法研究了 Copula 的模型選擇問題。 關(guān)于 Copula 模型的參數(shù)估計(jì)目前采用最多的方法是兩階段法,即先估計(jì)邊緣分布的參數(shù),之后再估計(jì) Copula 函數(shù)的參

11、數(shù)。這種方法的優(yōu)點(diǎn)在于思路清晰、計(jì)算量小,缺點(diǎn)在于不能整體把握模型的參數(shù),導(dǎo)致估計(jì)誤差。因此我們希望能夠找到一種方法來(lái)同時(shí)估計(jì)兩部分模型的參數(shù),從而提高模型的準(zhǔn)確率。 三、評(píng)述和總結(jié) 由上述的文獻(xiàn)的綜述和反應(yīng)可以看出來(lái),近年來(lái),隨著金融市場(chǎng)的快速發(fā)展以及經(jīng)濟(jì)全球化的不斷深入,投資者科教儀的金融資產(chǎn)越來(lái)越多,金融市場(chǎng)之間的關(guān)系也越來(lái)越緊密,任何一個(gè)開放國(guó)家的經(jīng)濟(jì)的巨幅波動(dòng)都可能對(duì)我國(guó)的經(jīng)濟(jì)帶來(lái)沖擊,都回影響到我過得金融市場(chǎng),從而影響到投資者的資產(chǎn)價(jià)值。因此金融風(fēng)險(xiǎn)管理也開始面臨越來(lái)越多的新問題和新挑戰(zhàn)。一方面,金融資產(chǎn)之間的相關(guān)性變得越來(lái)越復(fù)雜,傳統(tǒng)的線性相關(guān)以及誤差對(duì)稱的模型已難

12、以準(zhǔn)確反映其風(fēng)險(xiǎn)的相關(guān)信息;另一方面,金融風(fēng)險(xiǎn)管理的范圍已不僅僅是針對(duì)單個(gè)金融資產(chǎn)或者資產(chǎn)組合的收益風(fēng)險(xiǎn),而是拓展到了包括不同市場(chǎng)、不同種類金融風(fēng)險(xiǎn)的綜合管理。隨著Copula函數(shù)的應(yīng)用,相關(guān)性領(lǐng)域的研究進(jìn)入到一個(gè)全新的時(shí)代。Copula函數(shù)是一個(gè)全面度量變形結(jié)構(gòu)的方法,它的出現(xiàn)改變了傳統(tǒng)的用一兩個(gè)指標(biāo)來(lái)表示相關(guān)性結(jié)構(gòu)的方法使用一個(gè)完整的函數(shù),全面地表示出變量間的相關(guān)性,不僅僅是相關(guān)的程度,而是整個(gè)相關(guān)性結(jié)構(gòu)。因此,將Copula函數(shù)應(yīng)用于投資組合,可以得到一個(gè)與實(shí)際數(shù)據(jù)更為接近的聯(lián)合分布,從而可以建立起更為有效的風(fēng)險(xiǎn)管理模型。 參考文獻(xiàn) [1] Andrew J Patton.

13、Modeling Asymmetric Exchange Rate Depen-dence [J].International Economic Review, 2006,47(2). [2] Andrew J Patton. Application of Copula Theory in Financial E-conometrics [D].Department of Economics. University of Califor- nia. San Diego, 2002. [3] Ang A, Chen J.Asymmetric Correlation of Equity Por

14、tfolio [J]. Journal of Financial Economics, 2002, 63(3). [4]Claudio Romano. Calibrating and Simulating Copula Functions: An Application to the Italian Stock Market [R]. CIDEM, 2002b. [5]Erb Claude B, Harvey Campbell R, Viskanta Tadas E. Forecast- ing International Equity Correlation [J]. Financial

15、 Analysis Jour-nal, 1994. [6]Embrechts P, McNeil A, Straumann D. Correlation and Depen-dence in Risk Management:Properties and Pitfalls [C].Risk Man-agement: Value at Risk and beyond. Cambridge University Press,1999. [7]Joshua V Rosenberg, Til Schuermann. A General Approach to Integrated Risk Mana

16、gement with Skewed, Fat-tailed Risks [J]. Journal of Financial Economics, 2006,44 [8]Login F, Solnik B. Extreme Correlation of International Equity Markets [J]. Journal of Finance, 2001, 56(2). [9]Markowitz H.Portfolio Selection [J]. Journal of Finance, 1952。 [10]Markowitz H.Portfolio Selection:

17、 Efficient Diversification of In-vestment [M]. New York: John Wiey&sons, 1959. [11]Mendes B V M, Kolev Nikolai, Anjos U. Copulas: A Review and Recent Developments [J]. Stochastic Models, 2006,22(4). [12]Nelsen R. An Introduction to Copulas [M]. Springer: Lecture Notes in Statistics, 1999. [13] 張明

18、恒.多金融資產(chǎn)風(fēng)險(xiǎn)價(jià)值的 Copula 計(jì)量方法研究[J].?dāng)?shù)量經(jīng) 濟(jì)技術(shù)經(jīng)濟(jì)研究,2004, 21(4). [14] 韋艷華,張世英.金融市場(chǎng)的相關(guān)性分析—Copula-GARCH 模型 及其應(yīng)用[J].系統(tǒng)工程,2004, 22(4). [15] 劉志東.基于 Copula-GARCH-EVT 的資產(chǎn)組合選擇模型及其混合 遺傳算法[J].系統(tǒng)工程理論方法應(yīng)用,2006,15(2). [16 劉志東.度量收益率的實(shí)際分布和相關(guān)性對(duì)資產(chǎn)組合選擇績(jī)效的 影響[J].系統(tǒng)管理學(xué)報(bào),2007,16(6). [17] 侯成琪,王 頻.基于連接函數(shù)的整合風(fēng)險(xiǎn)度量研究 [J].統(tǒng)計(jì)研究,200

19、8,(11):72~80. [18]劉軼,王麗婭,司瞳. 我國(guó)開放式基金流動(dòng)性風(fēng)險(xiǎn)預(yù)警研究[J]. 財(cái)經(jīng)理論與實(shí)踐(雙月刊), 2011, (1): 49~52 [19]趙振全, 李曉周. 開放式基金風(fēng)險(xiǎn)比較的實(shí)證研究.[J] 當(dāng)代經(jīng)濟(jì)研究, 2006,(4): 51~55 [20] 陳協(xié)寧,歐海韜.設(shè)立保險(xiǎn)投資基金及基金管理公司的探討 [J].保險(xiǎn)研究,1999(9):33~37. [21]陳學(xué)華,韓兆州,唐珂.基于 VaR 和 RAROC 的保險(xiǎn)基金最優(yōu)投資研究 [J].數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究,2006(4):111~117. [22] 封建強(qiáng).滬、深股市收益率風(fēng)險(xiǎn)的極值 VaR

20、測(cè)度研究 [J].統(tǒng)計(jì)研究,2002(4):34~38. [23] 郭文旌,李心丹.VaR 限制下的最優(yōu)保險(xiǎn)投資策略選擇 [J].系統(tǒng)管理學(xué)報(bào),2009(10):583~587. 開題報(bào)告 一、選題的目的和意義 自布林頓森林體系瓦解以來(lái),金融市場(chǎng)的動(dòng)蕩頻繁。此外,由于經(jīng)濟(jì)全球化、投資自由化的發(fā)展以及信息技術(shù)的興起,也使得金融交易非常的活躍,并且金融體系的聯(lián)動(dòng)性以及波動(dòng)性也日趨增強(qiáng)。隨著金融市場(chǎng)的飛速發(fā)展,其在促進(jìn)經(jīng)濟(jì)發(fā)展的同時(shí)也帶來(lái)全球金融海嘯。特別是在二十世紀(jì)九十年代之后,頻繁的金融危機(jī)給全球經(jīng)濟(jì)帶來(lái)了極大的損失。如:1992 年歐洲貨幣危機(jī)

21、、1994 年墨西哥金融危機(jī)、1997 年的東南亞金融危機(jī)、2008 年的美國(guó)次債危機(jī)乃至最近的歐洲主權(quán)債務(wù)危機(jī)??梢?,在經(jīng)濟(jì)全球化的背景下,金融危機(jī)會(huì)對(duì)我國(guó)經(jīng)濟(jì)產(chǎn)生極為深遠(yuǎn)的影響,因此如何防范以及規(guī)避金融風(fēng)險(xiǎn)管理已成為學(xué)術(shù)界和實(shí)務(wù)界所共同關(guān)注的。 針對(duì)中國(guó)股票市場(chǎng)的大規(guī)模投資組合分析在文獻(xiàn)中尚很少予以討論.本文基于均值—絕對(duì)偏差的折中方法探討了我國(guó)股票市場(chǎng)169種股票的投資組合分析,得到了一些有益的啟示和結(jié)論.這些結(jié)論將有助于市場(chǎng)投資者和監(jiān)管者深化對(duì)我國(guó)股票市場(chǎng)投資的理解。 隨著基礎(chǔ)數(shù)學(xué)理論以及計(jì)算機(jī)技術(shù)的發(fā)展,Copula 函數(shù)的應(yīng)用研究得到快速發(fā)展,并由于其優(yōu)良的特質(zhì)而被廣泛運(yùn)用于金

22、融領(lǐng)域。在近幾年,歐洲中央銀行以及花旗銀行開始應(yīng)用 Copula 方法度量投資組合風(fēng)險(xiǎn)。在傳統(tǒng)的 VaR 風(fēng)險(xiǎn)度量研究中,大都假設(shè)收益率的聯(lián)合分布服從多元正態(tài)分布,這往往與金融收益率數(shù)據(jù)所普遍存在的尖峰厚尾及有偏性特征并不相符。Copula 函數(shù)進(jìn)入金融研究領(lǐng)域后便提供了一種解決該問題途徑,它放寬了正態(tài)性假設(shè),并且可以通過不同的相關(guān)性結(jié)構(gòu)將不同的邊際分布結(jié)合成多維聯(lián)合分布,因而可以更好地描述金融數(shù)據(jù)的分布特征。因此以 Copula 函數(shù)為工具,可以更為準(zhǔn)確的度量投資組合的風(fēng)險(xiǎn),從而達(dá)到風(fēng)險(xiǎn)規(guī)避與防范的目的。特別是,在金融危機(jī)這個(gè)國(guó)際大背景下,深入分析開放式基金的風(fēng)險(xiǎn)度量具有較強(qiáng)的理論和現(xiàn)實(shí)意義

23、。 二、國(guó)內(nèi)外研究現(xiàn)狀 (一)國(guó)外對(duì)于股票投資組合的研究 1、 現(xiàn)代投資組合理論的發(fā)展及面臨的問題 20 世紀(jì) 30 年代,Kegnes 和 Hicks 首先提出了“風(fēng)險(xiǎn)補(bǔ)償”的概念,認(rèn)為應(yīng)該對(duì)金融資產(chǎn)收益的不確定性給予相應(yīng)的風(fēng)險(xiǎn)補(bǔ)償。1952 年,Markowitz 在“風(fēng)險(xiǎn)補(bǔ)償”概念的基礎(chǔ)上提出了“均值-方差”模型,標(biāo)志著現(xiàn)代投資組合理論的開端?!熬?方差”模型使用金融資產(chǎn)收益率的方差作為風(fēng)險(xiǎn)的度量指標(biāo),首次對(duì)風(fēng)險(xiǎn)進(jìn)行了量化。該模型同時(shí)還基于金融資產(chǎn)之間的線性相關(guān)性研究了資金在投資組合中的最優(yōu)化配置問題。1964 年,Markowitz 的學(xué)生 William F. Shar

24、p 和Lintner、Mossion 三人幾乎同時(shí)獨(dú)立提出了資本資產(chǎn)定價(jià)模型(CAPM)。該模型同樣以金融資產(chǎn)線性相關(guān)性為基礎(chǔ),認(rèn)為當(dāng)投資組合中的股票個(gè)數(shù)足夠多時(shí),其非系統(tǒng)性風(fēng)險(xiǎn)將完全被分散,因此只需要對(duì)投資組合中的系統(tǒng)性風(fēng)險(xiǎn)給予風(fēng)險(xiǎn)補(bǔ)償。1976 年,Stephen Ross 創(chuàng)造性的在 CAPM 的基礎(chǔ)上提出了套利定價(jià)理論(APT),認(rèn)為金融資產(chǎn)收益率與一組影響因子線性相關(guān),進(jìn)一步豐富了現(xiàn)代投資組合理論。 由于發(fā)現(xiàn)在實(shí)證研究中以上模型與市場(chǎng)的實(shí)際情況并不完全相符,近年來(lái)很多學(xué)者針對(duì)現(xiàn)有投資組合模型假設(shè)中的不合理性提出了多種修正模型。例如Black(1972)提出的零貝塔 CAPM 模型、

25、Merton(1973)提出的動(dòng)態(tài)跨期 CAPM模型(ICAPM)、Breeden(1979)提出的基于消費(fèi)的 CAPM 模型(CCAPM)、Fama 等(1993)提出的三因子模型以及 Holmstrom 等(2001)提出的基于流動(dòng)性資產(chǎn)的資產(chǎn)定價(jià)模型(LAPM)等等。以上的修正模型放寬了傳統(tǒng)資產(chǎn)定價(jià)模型的假設(shè)條件,對(duì)現(xiàn)代投資組合理論作了進(jìn)一步的完善。 2、 Copula 方法在金融風(fēng)險(xiǎn)管理中的應(yīng)用需要進(jìn)一步深入 Copula 方法是一種能夠通過數(shù)據(jù)和單個(gè)變量的邊緣分布來(lái)近似構(gòu)造多個(gè)變量聯(lián)合分布的一種數(shù)學(xué)方法,最早由 Sklar 于 1959 年提出。與線性相關(guān)系數(shù)相比,Copula

26、函數(shù)能夠更加全面的描述隨機(jī)變量之間的相依性。1999 年,Embrechts等人首次將 Copula 理論引入了金融領(lǐng)域,將金融資產(chǎn)相關(guān)性分析推向了一個(gè)新的階段。學(xué)者們運(yùn)用該方法在對(duì)股票、匯率、期貨等金融市場(chǎng)的研究中取得了較好的效果。Patton 等(2001)將 Copula 方法用于匯率市場(chǎng),研究了日元和英鎊對(duì)美元匯率之間的相關(guān)性。Romano(2002)使用 Copula 方法研究了意大利股票市場(chǎng)的相關(guān)性。Fantazzini(2003)對(duì)美國(guó)期貨市場(chǎng)使用混合 Copula 模型進(jìn)行了相關(guān)性研究。此外,隨著 VaR(Value at Risk)作為一種新的風(fēng)險(xiǎn)度量方法開始被投資者廣泛接受

27、,Copula 方法用于構(gòu)建投資組合以及進(jìn)行金融風(fēng)險(xiǎn)管理的優(yōu)勢(shì)越來(lái)越明顯。研究者可以方便地由金融資產(chǎn)的邊緣分布和 Copula 方法來(lái)近似估計(jì)其聯(lián)合分布,進(jìn)而計(jì)算出投資組合的 VaR 值。如 Embrechts 等(2003)總結(jié)了 Copula 方法在金融風(fēng)險(xiǎn)管理中的應(yīng)用。Embrechts 等(2006)以 VaR 為風(fēng)險(xiǎn)度量使用 Copula 方法計(jì)算了投資組合的風(fēng)險(xiǎn)值。吳振翔等(2006)基于Copula-GARCH 模型對(duì)股票市場(chǎng)的投資組合風(fēng)險(xiǎn)進(jìn)行了分析。 3 Copula 方法中的模型選擇和參數(shù)估計(jì)問題 同線性相關(guān)系數(shù)相比,Copula 方法不但可以深入地度量隨機(jī)變量之間的相依

28、關(guān)系,而且可以用來(lái)建立隨機(jī)向量的多元統(tǒng)計(jì)模型,使得多元統(tǒng)計(jì)分析不再依賴于多元正態(tài)等已知分布假設(shè)。其主要思想是將隨機(jī)變量的邊緣分布同它們之間的相依結(jié)構(gòu)分開研究,即首先根據(jù)不同的樣本特征來(lái)選擇合適的邊緣分布函數(shù)對(duì)其進(jìn)行擬合,然后再選用合適的 Copula 函數(shù)來(lái)將各個(gè)邊緣分布“連接”成聯(lián)合分布。從這一過程可以看到,不同的邊緣分布函數(shù)以及 Copula 函數(shù)的選擇將直接影響到整個(gè)相關(guān)性模型的擬合結(jié)果。在邊緣分布的選擇中,以最常見的金融資產(chǎn)收益率樣本為例,目前比較常見的 ARCH 類模型簇和 SV 模型簇各有優(yōu)劣,需要根據(jù)實(shí)際樣本情況加以選擇而不能簡(jiǎn)單套用。事實(shí)上,收益率作為一種最常見的金融隨機(jī)變量樣

29、本其分布的擬合技術(shù)也已經(jīng)比較成熟。我們?cè)谔幚硪恍┬鲁霈F(xiàn)的金融問題時(shí)往往會(huì)遇到一些分布比較復(fù)雜的金融變量,這時(shí)如何根據(jù)樣本數(shù)據(jù)的分布特征來(lái)選擇合適的模型擬合就顯得尤為重要。此外,Copula 函數(shù)的選擇是決定相關(guān)性模型擬合效果的另一個(gè)重點(diǎn),不同類型的 Copula 適合描述的相關(guān)結(jié)構(gòu)也不同。關(guān)于這一點(diǎn),Roberto De Matteis(2001)曾對(duì) Copula 函數(shù)的選擇問題作了一個(gè)很好的綜述。Fermanian(2005)研究了 Copula 的擬合優(yōu)度檢驗(yàn)問題。Chen 等(2005)使用似然比檢驗(yàn)方法研究了 Copula 的模型選擇問題。 關(guān)于 Copula 模型的參數(shù)估計(jì)目前采

30、用最多的方法是兩階段法,即先估計(jì)邊緣分布的參數(shù),之后再估計(jì) Copula 函數(shù)的參數(shù)。這種方法的優(yōu)點(diǎn)在于思路清晰、計(jì)算量小,缺點(diǎn)在于不能整體把握模型的參數(shù),導(dǎo)致估計(jì)誤差。因此我們希望能夠找到一種方法來(lái)同時(shí)估計(jì)兩部分模型的參數(shù),從而提高模型的準(zhǔn)確率。 文獻(xiàn)的評(píng)述 可以看到,以上所有的投資組合模型都是以金融資產(chǎn)的線性相關(guān)性為基礎(chǔ)的,當(dāng)金融資產(chǎn)收益率分布滿足正態(tài)性假設(shè)時(shí)這種線性相關(guān)系數(shù)可以較好地描述變量間的相依關(guān)系。然而,近年來(lái)研究者發(fā)現(xiàn)金融資產(chǎn)收益率分布通常具有“尖峰厚尾”的特點(diǎn),并不適合用正態(tài)分布來(lái)擬合。此外,金融資產(chǎn)中存在著大量非線性關(guān)系,而傳統(tǒng)的線性相關(guān)系數(shù)則對(duì)此無(wú)能為力。最后,由于線性

31、相關(guān)系數(shù)無(wú)法全面地刻畫隨機(jī)變量之間的相關(guān)結(jié)構(gòu),而以多元正態(tài)分布作為聯(lián)合分布的假設(shè)在實(shí)證分析中又得不到支持(Embrechts 等 2002),使得金融資產(chǎn)的相關(guān)關(guān)系一直無(wú)法得到全面地描述。因此,考慮到以上的種種問題,人們需要使用一種新的方法來(lái)研究金融資產(chǎn)間的相依性,而 Copula 方法的出現(xiàn)正填補(bǔ)了這項(xiàng)空白。 (二)國(guó)內(nèi)對(duì)于Copula模型在股票投資中的研究 顧孟迪,孫楓,蔣馥(2000)選取1998年1月到3月上海證券交易所的市場(chǎng)數(shù)據(jù),對(duì)風(fēng)險(xiǎn)性投資保險(xiǎn)策略—資產(chǎn)組合保險(xiǎn)進(jìn)行了分析,在多頭市場(chǎng)上,通過調(diào)整的投資組合里會(huì)擁有更多的風(fēng)險(xiǎn)資產(chǎn)即股票,組合的總價(jià)值將也相應(yīng)增加,所以我們只用考慮空

32、頭市場(chǎng)的情形。實(shí)證分析中,在市場(chǎng)指數(shù)下跌3.77%的情況下,組合總價(jià)值并未減少,說(shuō)明在上海證券交易所上,投資組合保險(xiǎn)策略大體能起到保險(xiǎn)的效果,并且認(rèn)為投資組合保險(xiǎn)的成本就是購(gòu)買保險(xiǎn)的成本, 一般情況下,這一保險(xiǎn)成本并不全部發(fā)生。 何榮天(2003)提出基于VaR調(diào)整的投資組合保險(xiǎn)策略,即根據(jù)無(wú)風(fēng)險(xiǎn)資產(chǎn)的收益能彌補(bǔ)分配在風(fēng)險(xiǎn)性資產(chǎn)的風(fēng)險(xiǎn)值(VaR)來(lái)進(jìn)行相應(yīng)的資產(chǎn)分配,采用ta-garch模型來(lái)估計(jì)不斷變化的VaR值,根據(jù)收益風(fēng)險(xiǎn)的對(duì)照關(guān)系,來(lái)進(jìn)行相應(yīng)資產(chǎn)調(diào)整。實(shí)證顯示,該策略不僅起到了投資保險(xiǎn)功能,同時(shí)還有較低的市場(chǎng)風(fēng)險(xiǎn),獲得比較理想的收益,而且基于VaR的特性,動(dòng)態(tài)測(cè)定風(fēng)險(xiǎn)性資產(chǎn)面臨的風(fēng)險(xiǎn)

33、值,更符合機(jī)構(gòu)投資者的需求,也具有很好的操作性。 葉振飛、劉元海、陳崢嶸(2004)采用中信指數(shù)作為實(shí)證的數(shù)據(jù),劃分為上漲、下跌和震蕩三個(gè)時(shí)期,采用四種不同的調(diào)整法則,分析了 VGPI 與傳統(tǒng)的 SPO、CPPI 及 TIPP四種不同策略的表現(xiàn)。研究顯示波動(dòng)頻率為 3%的調(diào)整法則在上升和下跌時(shí)期表現(xiàn)更好,而將市場(chǎng)波動(dòng)性調(diào)整法則和移動(dòng)平均線調(diào)整法則綜合起來(lái)在震蕩時(shí)期有更好的表現(xiàn)。在相同的要保比例和乘數(shù)水平下,VGPI 策略表現(xiàn)最好,TIPP 策略次之,CPPI 策略表現(xiàn)最差。 陳湘鵬,劉海龍,鐘永光(2006)對(duì) OBPI 和 CPPI 策略在中國(guó)證券市場(chǎng)上的執(zhí)行效果進(jìn)行了比較研究,采用 1

34、993 年-2003 年 10 間的上證綜合指數(shù)進(jìn)行實(shí)證分析,結(jié)果顯示,在各個(gè)投資期間,OBPI 策略與 CPPI 策略均能達(dá)到所設(shè)定的保險(xiǎn)目標(biāo);OBPI 策略在股市持續(xù)上漲時(shí)的獲利能力強(qiáng)于 CPPI 策略,而在其他市場(chǎng)狀況時(shí)表現(xiàn)不如 CPPI 策略。并且認(rèn)為,投資組合保險(xiǎn)策略適合于某些風(fēng)險(xiǎn)承受能力有限的投資者,而不是任何投資者。 劉鵬,楊華峰和史本山(2010)采用蒙特卡羅模擬方法,引入風(fēng)險(xiǎn)值(VaR)作為評(píng)價(jià)投資組合保險(xiǎn)策略表現(xiàn)的指標(biāo),分析 CPPI,TIPP,OBPI 三種策略的表現(xiàn),與 CM 和B&H 策略對(duì)比,結(jié)果顯示基于 VaR 的指標(biāo)與基于 SHARP 比率的指標(biāo)結(jié)果并不一致。

35、并且指出由于組合保險(xiǎn)策略的保險(xiǎn)作用,其收益率不再服從對(duì)數(shù)正態(tài)分布,建議使用 VaR 進(jìn)行投資組合保險(xiǎn)策略績(jī)效的評(píng)價(jià)。 三、研究的基本內(nèi)容和研究方法 (一)研究的基本內(nèi)容 1. 引言 (1)研究的背景及內(nèi)容 (2)研究的目的及意義 (3)研究的框架與結(jié)構(gòu) 2.相關(guān)性與Copula理論 (1)Copula與股票投資組合的相關(guān)性 (2) 理論概述 2.2.1 概念 2. 2. 2 參數(shù)估計(jì) 2.2.3 選優(yōu):擬合優(yōu)度檢驗(yàn) 3. 基于 Copula 的股票連漲和連跌收益率風(fēng)險(xiǎn)分析 (1)股票市場(chǎng)連漲和連跌收益率的定義及問題的提出 3.1.1 刺激股票市

36、場(chǎng)連漲的因素 3.1.2 如何最大化增加連跌收益率 (2) Copula-ACD 模型設(shè)定 3.2.1 Log-ACD 模型設(shè)定 3.2.2 Archimedean Copula 模型設(shè)定 4. 實(shí)證分析 (1) 樣本統(tǒng)計(jì)性質(zhì)檢驗(yàn) (2) 模型擬合結(jié)果 (3) 結(jié)果分析 5 結(jié)論與展望 (二)研究方法 本文采用文獻(xiàn)法、調(diào)查法和訪談法相結(jié)合的方法進(jìn)行研究,也就是在對(duì)大量文獻(xiàn)進(jìn)行研究的同時(shí),參考前人研究的成果和結(jié)論,并結(jié)合實(shí)際的考察和數(shù)據(jù)的采集,最終通過理論結(jié)合實(shí)際的方式對(duì)論文完成分析和撰寫。 撰寫論文主要的工作內(nèi)容包括完成通過

37、大量的文獻(xiàn)閱讀和分析,加上實(shí)際考察和數(shù)據(jù)的研究,最終完成一篇到達(dá)標(biāo)準(zhǔn)的論文。 資料收集主要來(lái)自于幾個(gè)方面,第一是通過圖書館進(jìn)行文獻(xiàn)資料的收集;第二是通過網(wǎng)絡(luò)中相關(guān)資料的收集;第三是利用筆者現(xiàn)有文獻(xiàn)書籍。 運(yùn)用在線價(jià)值理論、Copula函數(shù)和其他一些模型來(lái)對(duì)計(jì)算得出的投資組合保險(xiǎn)策略進(jìn)行一個(gè)衡量和評(píng)估,從而比較各個(gè)模型的狀況。 本文從證券市場(chǎng)上受到廣泛關(guān)注的資金流向出發(fā),引入定單流指標(biāo)刻畫資金流向,研究基于定單流的證券投資策略,是一項(xiàng)涉及金融市場(chǎng)微觀結(jié)構(gòu)理論、期望效用理論、證券投資組合理論以及計(jì)量經(jīng)濟(jì)學(xué)的研究課題。在研究過程中,本文大量參考和閱讀國(guó)內(nèi)外公開發(fā)表的文獻(xiàn)以及國(guó)外尚未發(fā)表的工作論

38、文,在此基礎(chǔ)上展開廣泛而深入的研究。在具體研究方法上,充分利用理論分析與實(shí)證分析相結(jié)合、構(gòu)建數(shù)理模型和實(shí)證檢驗(yàn)等方法,以我國(guó)股票市場(chǎng)為研究對(duì)象,實(shí)證分析和檢驗(yàn)本文所采用的模型、方法和策略的有效性,得出較為客觀和準(zhǔn)確的研究結(jié)論。 四、研究重點(diǎn)和難點(diǎn) 本文的研究重點(diǎn)是,投資組合保險(xiǎn)策略的不同的策略的在不同條件下所帶來(lái)的風(fēng)險(xiǎn)收益的多少情況,各個(gè)策略在不同條件下優(yōu)劣狀況的比較和策略在不同風(fēng)險(xiǎn)下的收益?;谝陨嫌懻?,本文將從識(shí)別和度量市場(chǎng)風(fēng)險(xiǎn)、信用風(fēng)險(xiǎn)以及二者之間的關(guān)系三個(gè)方面入手,著重從以下幾個(gè)方面對(duì) Copula 方法在投資組合和金融風(fēng)險(xiǎn)管理領(lǐng)域中的應(yīng)用做更加深入的研究:1、將現(xiàn)有的基于 C

39、opula 的投資組合模型應(yīng)用到一些新出現(xiàn)的金融風(fēng)險(xiǎn)管理問題中,從不同的角度對(duì)金融問題提出新的解決思路。2、將 Copula 方法的基本原理同各類新型金融風(fēng)險(xiǎn)分析模型結(jié)合起來(lái),構(gòu)造新的相關(guān)性模型來(lái)研究風(fēng)險(xiǎn)管理領(lǐng)域中各類金融變量之間的潛在聯(lián)系,分析其內(nèi)在規(guī)律。3、從改善金融隨機(jī)變量的邊緣分布、改進(jìn)模型參數(shù)估計(jì)方法等方面入手,提高基于 Copula 的模型對(duì)風(fēng)險(xiǎn)進(jìn)行識(shí)別和度量的準(zhǔn)確性。 本文的研究難點(diǎn)是,需要建立一些跟策略相關(guān)建立的模型,需要在策略的使用中使用和代入數(shù)據(jù)進(jìn)策略中的繁雜的數(shù)學(xué)公式和模型,需要用在投資理論和Copula 函數(shù)等進(jìn)行投資組合的衡量和評(píng)價(jià)。 五、研究總體安排和進(jìn)度 本

40、研究計(jì)劃實(shí)施進(jìn)度如下: 第一階段:2013年10月28日,開題報(bào)告答辯。 第二階段:2013年10月28日~2013年1月28日,完成論文初稿。 第三階段:2014年1月28日~3月28日,撰寫第二稿。 第四階段:2014年5月下旬,完成終稿并打印成冊(cè)。 第五階段:2014年6月8日,畢業(yè)論文答辯。 參考文獻(xiàn) [1] Ausin C, Galeano P, Ghosh P. A semiparametric Bayesian approach to the analysis of financial time series with applications to val

41、ue at risk estimation[N]. SSRN Working Paper, 2010 [2] Chan N H, Deng S J, Peng L, Xia Z. Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations.[J] Journal of Econometrics, 2007, 137(2): 556~576 [3] Fan Y, Zhang Y J, Tsai H T, Wei Y M. Estimating ‘Value at Risk’

42、of crude oil price and its spillover effect using the GED-GARCH approach[J]. Energy Economics, 2008, 30(6): 3156~3171 [4] He, X. and P. Gong . Measuring the coupled risks: A copula-based CVaR model [J]. Journal of Computational and Applied Mathematics 2009,223(2): 1066~1080. [5] Huang, D., S. S. Z

43、hu, F. J. Fabozzi, et al. Portfolio selection with uncertain exit time: A robust CVaR approach [J]. Journal of Economic Dynamics and Control 2008,32(2): 594~623. [6] Marshall, A., L. Tang and A. Milne . Variable reduction, sample selection bias and bank retail credit scoring [J]. Journal of Empiri

44、cal Finance 2010,17(3): 501~512. [7] Pontines, V. Optimal common currency basket in East Asia [J]. Applied Economics Letters 2009 ,16(11): 1139~1141. [8] So M K P, Yu P L H. Empirical analysis of GARCH models in value at risk estimation[J]. Journal of International Financial Markets, Institutions

45、 and Money, 2009, 16(2): 180~197 [9] Turan G Bali. An Extreme Value Approach to Estimating Volatility and Value at Risk[J]. Journal of Business, 2003, 76: 83~112 [10] Wu P T, Shieh S J. Value-at-Risk analysis for long-term interest rate futures: Fat-tail and long memory in return innovations[J].

46、 Journal of Empirical Finance, 2009, 14(2): 248~259 [11] 曹鳳岐.我國(guó)保險(xiǎn)資金投資證券市場(chǎng)的渠道及風(fēng)險(xiǎn)控制 [J].中國(guó)金融,2004,(20):43~45. [12] 陳輝,陳建成.我國(guó)保險(xiǎn)投資組合的模擬和金融風(fēng)險(xiǎn)測(cè)量研究 [J].統(tǒng)計(jì)研究,2008,(11):64~71. [13] 陳協(xié)寧,歐海韜.設(shè)立保險(xiǎn)投資基金及基金管理公司的探討 [J].保險(xiǎn)研究,1999(9):33~37. [14]陳學(xué)華,韓兆州,唐珂.基于 VaR 和 RAROC 的保險(xiǎn)基金最優(yōu)投資研究 [J].數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究,2006(4):111~117

47、. [15] 封建強(qiáng).滬、深股市收益率風(fēng)險(xiǎn)的極值 VaR 測(cè)度研究 [J].統(tǒng)計(jì)研究,2002(4):34~38. [16] 郭文旌,李心丹.VaR 限制下的最優(yōu)保險(xiǎn)投資策略選擇 [J].系統(tǒng)管理學(xué)報(bào),2009(10):583~587. [17] 何其祥,張晗,鄭明.包含股指期貨的投資組合之風(fēng)險(xiǎn)研究——Copula方法在金融風(fēng)險(xiǎn)管理中的應(yīng)用 [J].數(shù)理統(tǒng)計(jì)與管理,2009,(1):159~166. [18] 侯成琪,王 頻.基于連接函數(shù)的整合風(fēng)險(xiǎn)度量研究 [J].統(tǒng)計(jì)研究,2008,(11):72~80. [19]劉軼,王麗婭,司瞳. 我國(guó)開放式基金流動(dòng)性風(fēng)險(xiǎn)預(yù)警研究[J]. 財(cái)經(jīng)

48、理論與實(shí)踐(雙月刊), 2011, (1): 49~52 [20]趙振全, 李曉周. 開放式基金風(fēng)險(xiǎn)比較的實(shí)證研究.[J] 當(dāng)代經(jīng)濟(jì)研究, 2006,(4): 51~55 [21]周開國(guó), 繆柏其. 應(yīng)用極值理論計(jì)算在險(xiǎn)價(jià)值(VaR)——對(duì)恒生指數(shù)的實(shí)證 分析[J]. 2002, 21(3): 37~41 [22] 周昭雄,王劍.基于 GARCH-VaR 模型的 ETF 基金市場(chǎng)風(fēng)險(xiǎn)的實(shí)證分析[J].工業(yè)技術(shù)經(jīng)濟(jì), 2010, 29(1): 127~132 Copula’s Conditional Dependence Measures for Por

49、tfolio Management and Value at Risk Dean Fantazzini Abstract Traditional portfolio theory based on multivariate normal distribution assumes that investors can benefit from diversification by investing in assets with lower correlations. However, this is not what happen

50、s in reality, since it is quite easy to see financial markets with different correlations but almost the same numbers of market crashes (if we define market crash as when returns are in their lowest percentile). In a similar fashion, recent empirical studies show that in volatile periods financial m

51、arkets tend to be characterized by different level of dependence than occurs in quiet periods. In order to take into account this reality, we resort to copula theory and its conditional dependence measures, like Kendall’s Tau and Tail dependence. The former satisfies most of the desired properties t

52、hat a dependence measure must have and it can detect non-linear association that correlation cannot see. Tail dependence refers to the dependence that arises between random variables from extreme observations. We consider a portfolio made up of the five most important future contracts actually trade

53、d in American markets and we take into consideration the most volatile period of the last decade, that is between March 13th 2000 until June 9th 2000. We show how these conditional dependent measures can be easily implemented both in the traditional mean-variance framework and in multivariate estima

54、tion, with a significant improvement over traditional multivariate correlation analysis. 1 .Introduction Traditional portfolio theory based on multivariate normal distribution assumes that investors can benefit from diversification by investing in assets with lower correlations. However this is no

55、t what happens in reality, since it is quite easy to see financial markets with different correlations but almost the same numbers of market crashes (if we de?ne market crash as an event when returns are in their lowest percentile). Correlation is a good measure of dependence in multivariate normal

56、distributions but it has several shortcomings: a) The variances of the random variables must benefit for the correlation to exist, and for fat-tailed distributions this cannot be the case b) Independence between two random variables implies that linear correlation is zero, but the converse is true o

57、nly for a multivariate normal distribution. This does not hold when only the marginal’s are Gaussian while the joint distribution is not normal, because correlation reflects linear association and not non-linear dependency; c) Correlation is not invariant to strictly monotone transformations. This i

58、s because it depends not only on the joint distribution but also on the marginal distributions of the considered variables, so that changes of scales or other transformations in the marginal’s have an effect on correlation. 1) In order to overcome these problems we can resort to copula theory, si

59、nce copulate capture those properties of the joint distribution which are invariant under strictly increasing transformation. A common dependence measure that can be expressed as a function of copula parameters and is scale invariant is Kendall’s tau. It satisfies most of the desired properties that

60、 a dependence measure must have (see Nelsen 1999) and it measures concordance between two random variables: concordance arises if large values of one variable are associated with large values of the other, and small ones occur with small values of the other; if this is not true the two variables are

61、 said to be discordant. It is for this reason that concordance can detect nonlinear association that correlation cannot see. As asset log return distributions are not normally distributed, the minimization of the portfolio’s variance do not minimize portfolio risk and produce the wrong capital alloc

62、ation. New risk measures have been proposed to obtain better capital allocations, but at the cost of simplicity and computational tractability: this is why most applied professionals skip them and prefer to rely on previous methods, similar to other financial fields (just think back to the Black & S

63、holes pricing formula and Garth (1, 1), which are still by far the most used models for option pricing and volatility forecasting). In order to satisfy this demand for understandable models, we propose here to use Kendall’s tau dependence measure within the traditional mean-variance framework, in th

64、e place of the correlation coefficients: this solution has the advantage of keeping the model tractable but at the same time considering the non-linear dependency among the considered variables. In a similar fashion, recent empirical studies show that in volatile period’s financial markets tends to

65、be characterized by different level of dependence than occurs in quiet periods. In order to take into account this reality, we propose to use the concept of Tail dependence, which refers to the dependence that arises between random variables from extreme observations. An important feature of copulat

66、e is that they allow for different degrees of tail dependence: Upper tail dependence exists when there is a positive probability of positive outliers occurring jointly, while lower tail dependence is symmetrically defined as the probability of negative outliers occurring jointly. What we propose is a direct consideration of this concept in the models by means of copula theory, as tail dependence coefficients can be calculated as simple functions of copulate parameters: if we follow the well-know

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!