20 米自動伸縮門設計THE DESIGN OF 20 METERS AUTOMATIC RETRACTABLE GATE學 生 姓 名 班 級 學 院 名 稱 專 業(yè) 名 稱 指 導 教 師 圖書分類號:密 級:原創(chuàng)性聲明本人鄭重聲明: 所呈交的學位設計,是本人在導師的指導下,獨立進行研究工作所取得的成果。除文中已經(jīng)注明引用或參考的內(nèi)容外,本設計不含任何其他個人或集體已經(jīng)發(fā)表或撰寫過的作品或成果。對本文的研究做出重要貢獻的個人和集體,均已在文中以明確方式標注。本人完全意識到本聲明的法律結(jié)果由本人承擔。設計作者簽名: 日期: 年 月 日版權協(xié)議書本人完全了解學院關于收集、保存、使用學位設計的規(guī)定,即:本校學生在學習期間所完成的學位設計的知識產(chǎn)權歸學院所擁有。學院有權保留并向國家有關部門或機構(gòu)送交學位設計的紙本復印件和電子文檔拷貝,允許設計被查閱和借閱。學院可以公布學位設計的全部或部分內(nèi)容,可以將本學位設計的全部或部分內(nèi)容提交至各類數(shù)據(jù)庫進行發(fā)布和檢索,可以采用影印、縮印或掃描等復制手段保存和匯編本學位設計。設計作者簽名: 導師簽名: 日期: 年 月 日 日期: 年 月 日摘要自動伸縮門是一款機電一體化的產(chǎn)品,它由控制系統(tǒng)實現(xiàn)電機的轉(zhuǎn)動,再由電機通過一系列傳動裝置,帶動門體運動。本文首先闡述了自動伸縮門產(chǎn)生的背景,它在當前社會中的發(fā)展狀況,以及對它進行研究的意義。繼而根據(jù)已知條件對相關參數(shù)進行計算,選擇合適的電動機。然后設計減速器傳動方式,確定傳動方式之后再依次對實現(xiàn)傳動的各個零件(包括齒輪、軸、傳動鏈、鏈輪)的各個參數(shù)進一步計算,接著要對設計完的零件進行強度校核。最后,對自動伸縮門的控制系統(tǒng)進行了設計,本文采用單片機進行系統(tǒng)控制,從而實現(xiàn)電動機的正轉(zhuǎn)、反轉(zhuǎn)、停轉(zhuǎn),漢字顯示方式控制,無線遙控控制等,再根據(jù)這些功能來選擇實現(xiàn)這些功能所需要的硬件設備,然后將這些設備正確連接來完成硬件系統(tǒng)的設計。關鍵詞: 伸縮門;減速器;控制系統(tǒng)IAbstractAutomatically retractable door is a product of mechatronics. Under the control of the system, it can make the motor rotate, and then, through a series of gearing, the motor drive the whole door to move. This paper first describes the background to generate automatic retractable door, its development in the current society, and the significance to study it. Then to calculate of the relevant parameters based on the known conditions and select the appropriate motor. Next, we should determine the way of transmission, after which the parameters of the various transmission parts need to be further calculated, including the design of gears, the design of shafts and the design of transmission chain and sprocket wheels. Afterwards, the intensity of each part will be checked. Finally, the control system of automatically retractable doors is designed. In this paper, we use single-chip to achieve system control, which can realize the normal-reverse transfer of the motor, the way of characters display, and wireless remote control. To implement these functions, we must choose necessary hardware devices, and these devices should be properly connected to complete the design of the hardware system.Keywords retractable door reducer control systemII目 錄摘要 I關鍵詞: IAbstract II1 緒論 11.1 課題研究內(nèi)容 .11.2 自動伸縮門的背景、發(fā)展及研究意義 .12 減速器的設計 32.1 電動機的選擇 32.2 傳動比的計算及分配 .42.3 計算傳動裝置的運動和動力參數(shù) .52.4 齒輪設計 62.4.1 高速級圓錐齒輪設計 .62.4.2 低速級斜齒圓柱齒輪設計 .112.5 軸的設計 182.5.1 高速軸的設計與計算 .182.5.3 中間軸的設計與計算 242.5.3 低速軸設計 303 鏈傳動設計 374 控制器設計 394.1 總體設計 .404.2 硬件選擇 .404.2.1 電機控制 404.2.2 遙控電路 404.2.3 漢字顯示模塊 414.3 硬件連接原理圖 .415 門體設計 435.1 總體設計 435.2 結(jié)構(gòu)設計 44結(jié)論 45致謝 46參考文獻 4701 緒論1.1 課題研究內(nèi)容本課題研究的對象是自動伸縮門,它主要由機頭、門體和行走輪組成,其中機頭是其核心部分,內(nèi)部包括電動機、控制系統(tǒng)、以及減速裝置。工作時,由控制系統(tǒng)控制電動機的正轉(zhuǎn)和反轉(zhuǎn),然后通過一系列的減速裝置帶動行走輪行走,從而實現(xiàn)伸縮門的前進與后退。本課題的主要研究的是與本專業(yè)聯(lián)系緊密的電動機和減速裝置部分。首先根據(jù)原始參數(shù)選擇合適的電動機,然后選擇合適的傳動機構(gòu)。為實現(xiàn)門體的正常運動,本設計擬選用圓錐-圓柱齒輪傳動,然后通過鏈傳動帶動行走輪行走。1.2 自動伸縮門的背景、發(fā)展及研究意義在20世紀,自動門在我國并不是很普遍,其核心技術也很落后,尤其是它內(nèi)部的控制系統(tǒng),當時在我國根本無法研制出來,因此很多都是從西方國家進口而來。但后來,隨著科學技術的不斷發(fā)展,我們自己也漸漸可以開發(fā)出自動伸縮門生產(chǎn)的整套流程。自動伸縮門從產(chǎn)生到投入使用已經(jīng)有一段時間,它的興起是在1996年,那段時間,很多廠家抓住這個契機大量生產(chǎn),市面上的伸縮門的種類非常多,這樣自然而然帶來的就是伸縮門的質(zhì)量問題,相當一部分該產(chǎn)品很不符合使用要求,存在著許多隱患。于是針對這個問題,國家于1997年頒發(fā)了通知,要求相關部門及研究院,修編一套自動伸縮門的規(guī)格,其目標是向國內(nèi)外先進企業(yè)看齊。此后隨著人民生活水平的提高,市場需求的逐漸擴大,科技水平的日益發(fā)達,自動伸縮門的功能越來越強大,應用也越來越廣泛。雖然在國內(nèi)它的起步比較晚,但相對來說其發(fā)展還是比較迅速的。如今,自動門在日常生活中可以說是隨處可見,學校、工廠、醫(yī)院等各個企事業(yè)單位均使用自動伸縮門作為自己的門面,不僅方便了車輛的進出與管理,同事還節(jié)省了人力物力。因此,對自動伸縮門進行研究對改善我們的日常生活,促進社會經(jīng)濟效益有著極其重要的意義。1.3 文章結(jié)構(gòu)本文首先對本課題進行簡單的介紹,并闡述自動伸縮門產(chǎn)生的背景,它在當前社會中的發(fā)展狀況,以及對它進行研究的意義。第二章主要對實現(xiàn)傳動的減速器進行設計。包括電動機選型,傳動比分配1以及相關參數(shù)計算,還有傳動零部件的設計。第三章主要對鏈傳動進行設計,它主要用來實現(xiàn)減速器輸出軸到伸縮門滾輪之間的傳動。第四章主要對自動伸縮門的控制系統(tǒng)進行設計。主要通過單片機實現(xiàn)對電動機的正轉(zhuǎn)、反轉(zhuǎn)、停轉(zhuǎn),漢字顯示方式以及無線遙控的控制,并作出硬件連接原理圖。最后主要進行了門體結(jié)構(gòu)的設計,并總結(jié)本次設計過程,對設計中提供幫助的老師同學表示感謝。22 減速器的設計2.1 電動機的選擇(1)選擇電動機的類型根據(jù)自動伸縮門的工作條件及用途,選用 Y 系列三相異步電動機(2)選擇電動機功率已知參數(shù)如表 2-1 所示:表 2-1 原始數(shù)據(jù)總拉力 F/N 速度 V(m/s)75035.01)伸縮門工作所需功率 WP式(2.1)10/FV?K625.3.7??2)總效率 a?式(2.2)54321?????a式中 ——表示聯(lián)軸器的效率;1——表示一對軸承的效率;2——表示高速級錐齒輪傳動效率;3?——表示低速級斜齒圓柱齒輪傳動效率;4——表示鏈傳動效率。5由參考文獻[10], 取 , , ,97.0,8.,93.0321????6.49.05??則將數(shù)據(jù)代入式(2.2)得電動機到工作機間的總效率為: 8. .4??a3)電動機所需工作效率 dP因本設計方案選用兩個電動機,則每個電動機所需工作效率 為:dP式(2.3)awd?2/?由式(2.1)得伸縮門運行所需要的總功率為 ,由式(2.2)得KWP625.?傳動總效率 ,則將數(shù)據(jù)其帶入式(2.3)得:81.0?a?3KWPd62.18.05??4)選取電動機的額定功率 0伸縮門在室外工作,其工作溫度正常,且需要長期連續(xù)運轉(zhuǎn),負荷變化很少,因此可跟手冊選擇相應的電動機型號,而不必再考慮電動機的發(fā)熱情況,更不必對其進行計算。通常選擇電動機的額定功率為 ,即dP)3.1~(0?式(2.4)KWPd 2.61.)3~1().(0 ???(3)確定電動機轉(zhuǎn)速伸縮門機頭的滾輪的工作轉(zhuǎn)速為:式(2.5)min/45.130146601rdvnw ?????式中 ——表示伸縮門的運行速度,單位 m/s;v——表示機頭滾輪的直徑,單位 mm。d由參考文獻[10] 知,錐齒輪傳動傳動比 ,圓柱齒輪傳動傳動比3~2?錐i,則總傳動比范圍為:6~3?柱i式(2.6)186??)()(柱錐總 i由上文可知,鏈傳動的傳動比取為 ,所以,電動機的轉(zhuǎn)速范圍為:鏈i式(2.7)min/920~7.3186245.10 rinw??)(總鏈根據(jù)以上參數(shù)由參考文獻[10]選用 Y132S-8 型號電動機,具體數(shù)據(jù)如表 2-2所示。表 2-2 電機型號電動機轉(zhuǎn)速( )in/r電動機型號額定功率( kW) 同步 滿載電動機質(zhì)量(kg)Y132S-8 2.2kW 750 710 632.2 傳動比的計算及分配(1)總傳動比計算式(2.8)8.1345.70?wmni式中 nm——表示電動機的滿載轉(zhuǎn)速,單位 r/min;nw——表示伸縮門機頭的滾輪的工作轉(zhuǎn)速,單位 r/min(2)分配傳動比4本設計中擬定鏈傳動傳動比為 2,則由參考文獻[1]得高速級錐齒輪的傳動比 為:1i式(2.9)725.18.35.0.1 ????減ii則低速級斜齒圓柱齒輪傳動比 為:2式(2.10)475.12i減2.3 計算傳動裝置的運動和動力參數(shù)(1)各軸轉(zhuǎn)速電動機滿載轉(zhuǎn)速: 式(2.11)min/710rn?高速軸轉(zhuǎn)速: 式(2.12)1中間軸轉(zhuǎn)速: 式(2.13)in/594.12.//12 ri?低速軸轉(zhuǎn)速: 式(2.14)8043n?工作軸轉(zhuǎn)速: 式(2.15)mi/././ riw鏈式中 ——表示圓錐齒輪傳動比; 1i——表示圓柱齒輪傳動比; 2——表示鏈傳動傳動比。鏈i(2)各軸輸入功率高速軸輸入功: 式KWP1846.293.001???聯(lián)?(2.16)中間軸輸入功率: 式076.2912 ??錐軸 承(2.17)低速軸輸入功率: 式KWP53.18.076.223?柱錐 ?(2.18)工作軸轉(zhuǎn)速: 式KWw8253.193.06.97??聯(lián)鏈軸 承(2.19)5(3)各軸轉(zhuǎn)矩軸的轉(zhuǎn)矩計算公式為式(2.20)npT950?則高速軸轉(zhuǎn)矩: mNnPT???32.71846.295011中間軸轉(zhuǎn)矩: ??5.9.022低速軸轉(zhuǎn)矩: mNnPT???3274.18.5695033工作軸轉(zhuǎn)矩: ww ??.9.2.4 齒輪設計2.4.1 高速級圓錐齒輪設計(1)選擇材料對于自動伸縮門這種一般的機械,大、小錐齒輪均選用 45 鋼,小齒輪調(diào)制處理,大齒輪正火處理,由參考文獻[10]得齒面硬度 , 25~17?HBW,它們的平均硬度分別為 , 。兩接217~62?HBW236190觸齒面之間的硬度差為 ,在 之間,選 8 級精度。4621??HBW50~(2)初步計算傳動的主要尺寸由兩齒輪的齒面硬度可知該齒輪傳動為軟齒面閉式傳動,因此應該按齒面接觸疲勞強度進行設計計算,其設計公式為:式(2.21)??3211)5.0(8.4????????HERZKTd??1) 小齒輪傳遞轉(zhuǎn)矩為 mN??92) 因為齒輪的圓周速度并不可知,因此動載荷系數(shù)的值不能確定,可初步選為載荷系數(shù) Kt=1.33) 由參考文獻[10]查得彈性系數(shù) MPaZE8.194) 由參考文獻[10]查得齒輪的節(jié)點區(qū)域系數(shù) 5.2?H5) 齒數(shù)比 725.1?iu66) 取齒寬系數(shù) 3.0?R?7) 許用接觸應力計算如下:式(2.22)??HNSZlim?由參考文獻[10] 得接小齒輪與大齒輪觸疲勞極限應力為 ,MPaH5801lim??。MPaH3902lim??它們的應力循環(huán)次數(shù)分別為:式(2.23)91 086.4)238(1706????hjLnN式9912 .25.84??i(2.24)式中 ——表示高速軸轉(zhuǎn)速,單位 r/min n——表示齒輪轉(zhuǎn)過一圈應力變化次數(shù)j——表示工作總時間,單位小時hL由參考文獻[10] 查得小、大齒輪的壽命系數(shù)分別為 , 。9.01?NZ5.2N安全系數(shù) ,則將數(shù)據(jù)代入式( 2.22)得0.1?HS?? a5289.01lim1 MPSZHN???.370.2li2H?因此,取 ??a5.370MP?則由式(2.21)初算小齒輪的分度圓直徑 ,有:t1d??mZKTdHER324.9 5.3702819).501(7.085293).(.4231t1? ??????????????????(3)確定傳動尺寸1)計算載荷系數(shù)由參考文獻[10] 查得使用系數(shù) 0.1?AK齒寬中點分度圓直徑為:7式(2.25)mdRttm475.8)3.01(329.1????故 式sndvtm /96.21061061 ????(2.26)本設計中的齒輪是 8 級精度,故由參考文獻[4]可知應該按 9 級精度查表,則查參考文獻[10] 得動載荷系數(shù)為 ,齒向載荷分配系數(shù) ,則2.?vK13.??K可計算出載荷系數(shù)為式(2.27)356.1.0.1???VA2)對 進行修正td1由式(2.27)的 值可知其與選擇的 值有些出入,所以要對由 計算出KtKtK的 重新計算,即t1式(2.28)mdtt 631.9.51324.931 ????3)確定齒數(shù)選取小錐齒輪齒數(shù) =24,則可計算出大錐齒輪齒數(shù)為1z式(2.29)4.1275.12???uz取 。則42?z.4'式(2.30)%45.172.51' ????u誤差在允許范圍內(nèi)4)大端模數(shù) m式(2.31)mzd901.3246.1??查參考文獻[10] ,取標準模數(shù)5)大端分度圓直徑小錐齒輪大端分度圓直徑為式(2.32)631.9241????mzd則大錐齒輪大端分度圓直徑 z82286)錐頂距式(2.33)mudR74.9615.2961221 ????7)齒寬式(2.34)Rb.30??(4)校核齒根彎曲疲勞強度齒根彎曲疲勞強度條件為:式(2.35)??FSFRtFYbmK???????)5.01(8.1)由前文可知載荷系數(shù) ,齒寬 ,大端模數(shù) ,36mb29?m4?齒寬系數(shù) 。3.0R?2)圓周力為:式(2.36)NdTFRt 7.18)3.051(96)5.01(2?????3)齒形系數(shù) 與應力修正系數(shù) 的計算YSY式(2.37)862.175.1cos221 ??u?式(2.38)49.0.22?則小齒輪當量齒數(shù)為式(2.39)64.782.011??COSZV大齒輪當量齒數(shù)為 6.49.022??SZV則由參考文獻[10] 查得小齒輪齒形系數(shù) ,應力修正系數(shù) ,58.1?FY60.1?SY大齒輪齒形系數(shù) ,應力修正系數(shù) 。34.2FY72S4)許用彎曲應力式(2.40)??FNlim?由參考文獻[10] 查得小、大彎曲疲勞應力分別為 ,MPaF215li?9;大、小齒輪壽命系數(shù)相等,即 ;安全系數(shù)MPaF1702lim?? 121?NY,故小齒輪許用彎曲應力為5.S??MPaSYFN725.1lim1???大齒輪許用彎曲應力為 ??aSFNF13625.0lim2小齒輪的彎曲應力為式(2.41)??111a96.47 6.1582)3.0(402857.83.)(.FSFRtFMPYbmK?????????大齒輪的彎曲應力為式(2.42)??2122.486.573.97FSFFMPaY????(5)計算錐齒輪傳動其他幾何尺寸1)小錐齒輪分錐角式(2.43)ou745.2915.arcos1arcos21 ??????2)大錐齒輪分錐角式(2.44)ou25.60175.arcos1arcos222?3)頂隙式(2.45)8.4.0*???mc式中 ——表示頂隙系數(shù)。*c4)大端齒頂高式(2.46)xha)1(?因為大、小錐齒輪高變位系數(shù)均為 0,即 ,故大、小錐齒輪大端齒頂?10高相等,為 mha421?5)大端齒根高式(2.47)xcf )(*??因為大、小錐齒輪高變位系數(shù)均為 0,即 ,故大、小錐齒輪?大端齒根高相等,為 mmxchff 8.4)2.1()1(*21 ??????6)小錐齒輪大端齒頂圓直徑式11os?da(2.48)m9456.10282.???7)大錐齒輪大端齒頂圓直徑式(2.49)22cos?dam968.1741.0???8)小錐齒輪大端齒根圓直徑式(2.50)df6528.76.049cos.11????則大錐齒輪大端齒根圓直徑為式(2.50)mdf2374.16961.08cos.2????2.4.2 低速級斜齒圓柱齒輪設計(1)選擇材料大、小齒輪均采用 45 鋼,小齒輪調(diào)質(zhì)處理,大齒輪正火處理,由參考文獻[10]得齒面硬度 , 。平均硬度 ,25~17?HBW217~62?HBW2361?HBW。 ,在 之間,選 8 級精度。1902?B46?50311(2)初步計算傳動的主要尺寸由于兩齒輪的齒面硬度較低,因此設計時按齒面接觸疲勞強度計算,其公式為:式(2.51)223 )][(1HEdZuKT???????1)小齒輪傳遞轉(zhuǎn)矩為 mN??5.4822)因為齒輪的圓周速度并不可知,因此動載荷系數(shù)的值不能確定,可初步選載荷系數(shù) ,選中間值.1~?t .1t3)由參考文獻[10] ,取齒寬系數(shù) R?4)由參考文獻[10] 查得彈性系數(shù) MPaZE8.9?5)初選錐齒輪的螺旋角 ,由參考文獻[10]查得其節(jié)點區(qū)域系數(shù)大小o2?為 6.2?HZ6)齒數(shù)比 42?iu7)初選小齒輪齒數(shù) ,則大齒輪齒數(shù) ,則可計03Z 802434???uZ算出端面重合度為式(2.52)64.112cos802.38.14??????????????????軸向重合度為式(2.53)487.112tan0.30.??odZ????由參考文獻[10] 查得重合度系數(shù) .?z8)由參考文獻[10] 查得螺旋角系數(shù) 9?9)許用接觸應力計算如下:由參考文獻[10] 查得兩齒輪的接觸疲勞極限應力分別為 ,MPaH5801lim??。MPaH302lim??由式(2.23) 、 (2.24)可計算出它們的應力循環(huán)次數(shù)分別為: 923 37.2)3082(1594.60 ????hjLnN24 7.71.i12式中 ——表示中間軸轉(zhuǎn)速,單位 r/min 2n——表示齒輪轉(zhuǎn)過一圈應力變化次數(shù)j——表示工作總時間,單位小時hL由上述數(shù)據(jù)查參考文獻[10]得兩齒輪的壽命系數(shù) , 。安全13?NZ05.4N系數(shù) ,則將數(shù)據(jù)代入式( 2.22)得0.1?HS??a58013lim3 MPSZHN???.49.4li4H?因此,取 ??a5.09MP?由式(2.51)可以初步計算出小齒輪 3 的分度圓直徑大小 ,即t3dmZuKTdHEdt16.495.409.78628.14.5.82)][( 23 223? ???????????????(3)確定傳動尺寸1)計算載荷系數(shù)由參考文獻[10] 查得使用系數(shù) ,由0.1?AK,smndvt /059.164.49.310623 ?????查參考文獻[10] 得動載荷系數(shù) ,齒向載荷分配系數(shù) ,齒間1.v 1.?K載荷分配系數(shù) ,則載荷系數(shù)為:.?K式(2.54)4652.1.0.?????VA2)對 進行修正td3由于計算出的 值與開始選擇的 值有相差較大,故需對由 計算出的tKtK進行修正,則由式(2.27 )得t3 mdtt 918.4.6521.4933 ????3)確定模數(shù) nm式(2.55)zo4.20cs18.cos3?13查參考文獻[10] ,取標準模數(shù) mn5.2?4)計算傳動尺寸中心距為式(2.56)????Zmaon 79.12cs2805.cos243 ???????圓整, 18則按圓整后的中心距修正螺旋角為式(2.57)????onaz 429.1825.0rcos2arcos43 ???????顯然計算出的 值與開始選擇的值之間的差距不是很大,因此不需要對與有關的參數(shù)再重新計算,故小齒輪分度圓直徑為式(2.58)mzmdon 2.5149.cs02o33 ???大齒輪分度圓直徑為 zdon 8.2049.1cso44?齒輪寬度為 mbd3.56.3???這里取大齒輪齒寬 ,小齒輪齒寬m54 b0(4)校核齒根彎曲疲勞強度齒根彎曲疲勞強度條件為式(2.59)??FSFnFYdbKT??????321)由前文可知載荷系數(shù) ,小齒輪分度圓直徑 ,中465.1 md2.513?間軸轉(zhuǎn)矩 ,模數(shù) 。mNT??5.4812 mn.2)齒寬 b3)齒形系數(shù) 與應力修正系數(shù) 的計算FYSY小齒輪當量齒數(shù)為式(2.60)97.204.1cos33??oVZ?大齒輪當量齒數(shù)為14式(2.61)86.3429.1cos80334??oVZ?則由參考文獻[10] 查得小齒輪齒形系數(shù) ,應力修正系數(shù) ,7.FY5.13?SY大齒輪齒形系數(shù) ,應力修正系數(shù) 。26.4?FY4S4)由參考文獻查得重合度系數(shù) 1.0??5)由參考文獻查得螺旋角系數(shù) 89?6)許用彎曲應力由相關參數(shù)查參考文獻[10]可以得到小、大齒輪的彎曲疲勞極限應力的值分別為 , ;它們的壽命系數(shù)相等,即MPaF2153lim??PaF1704lim??;安全系數(shù) ,則由式(2.40 )得小齒輪許用彎曲應力為43NY25.S??MPaYFNF1725.3li3 ??大齒輪許用彎曲應力為 ??aSFNF13625.04lim4??由式(2.59)得小齒輪的彎曲應力為 ??3323219.54 89.0715.62.846.FSFnFMPaYdbKT?????????由式(2.42)得大齒輪的彎曲應力為 ??434470.55.16279FSFFMPaY????(5)計算齒輪傳動其他幾何尺寸1)端面模數(shù)式(2.62)56.249.1cos??ontm?2)齒頂高式(2.63)hna.??153)齒根高式(2.64)mmchnaf 125.3)25.01()( ?????4)全齒高式(2.65)fa 65)頂隙 mmcn25.0.*???式中 ——表示頂隙系數(shù)。*c6)小齒輪齒頂圓直徑式(2.66)hdaa .65123?7)大齒輪齒頂圓直徑式(2.67)maa 8.209.8.044 ???8)小齒輪齒根圓直徑式(2.68)hdff 5.41.32.53?9)大齒輪齒根圓直徑式(2.69)mff .98.8.044 ???2.4.3 齒輪上作用力的計算對齒輪上作用力的計算是為了方便下面對軸的進行設計和校核、也方便了鍵和軸承的選擇,其計算過程如下(1)高速級齒輪傳動的作用力1)已知條件由式(2.16)可知高速軸傳遞的轉(zhuǎn)矩為 ,由式(2.12)可mNT??2931知轉(zhuǎn)速為 ,由式(2.32)可知小齒輪大端分度圓直徑 ,min/701rn? md961?再由式(2.43)可知小錐齒輪分錐角 o745.1?2)錐齒輪 1 的作用力圓周力為式(2.70)NdTFRmt 7.18)3.051(962)5.0(211 ???????它的方向與它所受的力作用點的圓周速度方向相反徑向力為16式(2.71)NFootr 12.745.29cs0tan7.18cosan1 ???????它的方向由力的作用點指向輪1的轉(zhuǎn)動中心軸向力為式(2.72)oota 78.12945.sin20ta7.18sin1 ??????它的方向即為沿軸線方向從小錐齒輪的小端指向大端法向力為式(2.73)NFotn 8.76420cs.1o1???3) 錐齒輪2的作用力錐齒輪2上的圓周力、徑向力和軸向力與錐齒輪1上的圓周力、軸向力和徑向力大小相等,作用方向相反。(2)低速級齒輪傳動的作用力1)已知條件由式(2.20)可知中間軸傳遞的轉(zhuǎn)矩為 ,由式(2.13)mNT??5.4812可知轉(zhuǎn)速為 ,再由式(2.57)可知低速級斜齒圓柱齒輪的螺旋min/07.24rn?角為 。斜齒圓柱齒輪 3 與錐齒輪 2 均安裝在中間軸上,為了使它們o9.?在軸線方向所受到的力最小,我們選擇齒輪 3 的旋向為右旋,則相應低速軸上齒輪 4 的旋向為左旋,由式(2.58)可知小齒輪大端分度圓直徑 。d2.513?2)齒輪 3 的作用力圓周力為 NdTFt 2.18.5423???它的方向與它所受力的作用點處的圓周速度方向相反徑向力為式(2.74)NFontr 5.701429.1cstan.8cosa3 ?????它的方向是由力作用點的位置指向圓柱齒輪3的轉(zhuǎn)動中心軸向力為式(2.75)Fota 8.4129.tan.18n3 ???它方向可以通過右手法則進行確定,用右手握住齒輪3的軸線,保證四指的方向與齒輪3的轉(zhuǎn)動方向相同,那么,這個時候,你的大拇指所指的方向就是該軸向力的方向17法向力為式(2.76)NFoontn 1.20549.1cs208cos33 ?????3) 齒輪4的作用力從動齒輪4所受到的圓周力、徑向力和軸向力與主動齒輪3上的圓周力、徑向力和軸向力屬于作用力和反作用力,它們大小相等,方向相反。2.5 軸的設計2.5.1 高速軸的設計與計算(1)已知條件由前文可知高速軸傳遞的轉(zhuǎn)矩為 ,功率 ,mNT??2931 KWP1846.2?轉(zhuǎn)速 ,小齒輪大端分度圓直徑 ,齒寬中點處分度圓直min/710rn?d61徑 ,齒輪寬度 。ddRm6.81)5.(??b(2)選擇軸的材料因傳遞的功率不是很大,并對其他方面也沒有特殊要求,由參考文獻[10]選擇軸的材料為常用的 號鋼,調(diào)質(zhì)處理4(3)初步計算軸徑由參考文獻[10] 查得 ,取中間值 ,則可得到軸的最小135~06?C18?C直徑:式(2.77)mnPd6.704.28331mi ?高速軸與電動機連接,中間需用聯(lián)軸器來實現(xiàn),聯(lián)軸器通過鍵槽與軸連接,為保證工作要求,開鍵槽軸徑需增大 3%至 5%,則軸端最細處直徑為式(2.78)018.~64.17)05.~3.(16.7.1 ????d(4)結(jié)構(gòu)設計軸的結(jié)構(gòu)構(gòu)想如下圖所示:圖 2-1 高速軸結(jié)構(gòu)構(gòu)想181)設計軸承部件的結(jié)構(gòu)考慮本減速器功率不大,發(fā)熱必然不大,且軸不會很長,故該高速軸的軸承采用兩端固定的方式。這里,根據(jù)軸上的零件的安裝順序?qū)S進行設計。2)聯(lián)軸器與軸段 1軸段 1 與電動機連接,上面需安裝聯(lián)軸器,因此,它的設計應與聯(lián)軸器的選擇同步。為減小電機與軸段 1 連接的安裝誤差和振動,這里選用彈性柱銷聯(lián)軸器。查參考文獻[10] ,取載荷系數(shù) ,則計算轉(zhuǎn)矩為5.?AK式(2.79)mNTAC ???.43982.1由參考文獻[10] 查得 LX1 型聯(lián)軸器符合要求,它的各參數(shù)如下表所示:表 2-3 LX1 型聯(lián)軸器的相關參數(shù)公稱轉(zhuǎn)矩(N·m) 許用轉(zhuǎn)速(r/min) 軸孔范圍(mm )250 8500 12~24由前文可知 ,故這里取聯(lián)軸器的轂孔直徑為 19mm,并查得其018.?d軸孔長度 ,選擇 Y 型,則可得到該聯(lián)軸器的代號是 LX1 19×42 GB/T mL42?聯(lián)5014—2003,故軸段 1 的直徑 ,它的長度比轂孔寬度稍微小點,取md91?。013)軸承與軸段 2、4要確定軸段 2 的軸徑大小,需考慮聯(lián)軸器的在軸線方向的固定方式和所選用的密封圈的尺寸。若聯(lián)軸器采用軸肩定位,則軸肩高度為式(2.80)mdh 9.1~3.)1.0~7.()1.0~7.( ????則軸段 2 的直徑為式(2.81)8.26.)9.3.(212?由前文可知,軸的圓周速度顯然是比 3m/s 小的,因此可以選擇氈圈進行密封,查參考文獻[10] ,無在上式范圍內(nèi)的合適氈圈,故此處改用軸套定位,顯然軸套內(nèi)徑與軸直徑相等,為 19mm,考慮該高速軸是懸臂梁,且受到軸向力作用,因此選用圓錐滾子軸承,初選軸承型號為 32305,由參考文獻[10]查得其各參數(shù)如下表所示:表 2-4 32305 圓錐滾子軸承各使用參數(shù)內(nèi)徑 d(mm) 25外徑 D(mm) 52內(nèi)圈寬度 B(mm) 15裝配高 T(mm) 16.25內(nèi)圈定位直徑 da(mm) 31外圈定位直徑 Da( mm) 4619軸上力作用點與外圈大端面距離 a3(mm) 12.5則軸承內(nèi)徑就是軸段 2 的直徑,為 ,同時為保證聯(lián)軸器的定位md25?軸套能夠頂?shù)捷S承內(nèi)圈的左端面,必須使軸段 2 長度比軸承內(nèi)圈的寬度 B 稍微小一點,取 。mL142?由前文可知高速級錐齒輪的圓周速度大于 2m/s,所以這里軸承選擇油潤滑,工作時通過齒輪把潤滑油帶進導油溝中,然后順著導油溝流進軸承座中。在正常情況下,同一根軸上的選擇兩個軸承通常型號相同,故取軸 4 直徑,為達到裝配要求,軸段 4 的長度必須比軸承內(nèi)圈的寬度 B 稍微小d254?點,取 。mL14)軸段 3左右兩個圓錐滾子軸承根據(jù)軸段 3 進行定位,所以該軸段的直徑應該是軸承內(nèi)圈的定位直徑,即 。至于其長度的確定需考慮軸的懸臂長度,d13?我們將在下文討論。5)齒輪與軸段 5軸段 5 上安裝小錐齒輪,該軸段采用懸臂形式,其直徑必須比軸段 4 直徑小,初選其大小為 。md25?對于直徑比較小的錐齒輪,我們通常選擇其為實心結(jié)構(gòu),則取其齒寬中點分度圓與其大端處的徑向端面之間的距離 M=17.5mm;取其大端側(cè)徑向端面與軸承套杯端面之間的距離△ 1=10mm;取其大端側(cè)徑向端面與輪轂右端面之間的距離為 30mm;取軸承外圈寬邊與箱體內(nèi)壁之間的距離 C=5mm。小錐齒輪左側(cè)采用軸套定位,右側(cè)采用軸端擋圈定位,為了保證軸端擋圈能夠緊緊壓住錐齒輪 1的右端面,必須使軸與齒輪配合段的長度小于齒輪轂孔的長度,取這個差值大小為 0.75mm。這樣,我們可以得到軸段 5 的長度為式(2.82)mLTCL.4275.0142.61035????6)確定軸段 1 的長度軸段 1 的長度不僅與該軸段上所安裝的零件有關系,還與其左端的軸承端蓋等零件有關系,因此,要確定軸段 1 的長度,要先確定好軸承端蓋等相關零件的相關尺寸。由參考文獻[10] 知,對于圓錐—圓柱二級齒輪傳動,其箱體壁厚按照二級圓柱齒輪減速器計算,則可得到下箱座壁厚為式(2.83)ma2.6318025.3.0??????式中 a——表示低速級中心距20取其壁厚 m8??對于圓錐—圓柱二級齒輪傳動,因式(2.84)maR3074.21874.96???故由參考文獻[10] ,查得各相關零件參數(shù)如下表所示:表 2-5 箱體相關零件參數(shù)軸承旁連接螺栓的公稱直徑 M12箱體凸緣連接螺栓的公稱直徑 M10地腳螺栓公稱直徑 dφ=M17軸承端蓋連接螺釘?shù)墓Q直徑 0.4 dφ=0.4×16=6.4mm,取其值為 M8端蓋與軸承座間調(diào)整墊片厚度 △ t 2mm軸承端蓋凸緣厚度 Bd 1.2×0.4 dφ=1.2×8=9.6mm 由上表可知,高速軸軸承端蓋連接螺釘?shù)墓Q直徑為 M8,則查參考文獻選取該連接螺釘規(guī)格為 GB/T 5781 M8×25 ,此處連接螺釘處于箱體端面,有很大的空間進行安裝或拆卸,故取聯(lián)軸器轂孔端面與軸承端蓋表面之間的距離為K=10mm,為使軸段 1 的長度為整數(shù),取軸承端蓋凸緣安裝面與軸承左端面之間的距離 , 取軸段 1 的左邊端面與聯(lián)軸器左端面之間的距離為ml25.4?1.75mm,則由以上數(shù)據(jù)可計算出軸段 1 的長度為式(2.85)lTlBKLd9075.142.65.2441????聯(lián)7)確定軸段 3 的長度軸段 3 的長度與該段的懸臂長度,即小齒輪的受力作用點與右端軸承對軸的作用力點之間的距離有關,其大小為式(2.86)maCMl 415.2105.7313 ??????由此可得兩軸承分別對軸段 2、4 的力作用點之間的距離為式(2.87)ll .~8).~()5.(32 ?則可計算出軸段 3 的長度為式(2.88)mTalL95~.7425.16.2).108(32???取 mL803?則由此可計算出兩軸承分別對軸段 2、4 的力作用點之間的具體距離為21式(2.89)mTaLl5.8725.16.2032????其值在 之間,合格5.10~828)軸段 1 力作用點與左軸承對軸段 2 力作用點之間的距離式(2.90)maTLl8175.12.5.649031?????(5)鍵連接聯(lián)軸器與軸段 1,錐齒輪 1 與軸段 5 均采用 A 型普通平鍵連接,查參考文獻,取聯(lián)軸器與軸段 1 之間鍵的型號為: ;取錐齒203196/406??TGB鍵輪 1 與軸段 5 之間鍵的型號為: 。/38鍵(6)軸的受力分析1)畫高速軸的受力簡圖軸的受力簡圖如圖 2-2 所示2)計算支承反力在水平面上為式(2.91)NldFRmarH 9.455.8726.19412.2131 ??????式Hr 03712 ??(2.92)在垂直平面上為式(2.93)NlFRtV 8.365.8741231???式(2.94)Vt 5.0.1?軸承 1 的總支承反力為式(2.95)RH 9.38.69.4522211 ???軸承 2 的總支承反力為 NV .105.0.732222 ??3)畫彎矩圖彎矩圖如圖 2-2 所示22在水平面上,右軸承對軸段 4 的力作用點處的剖面 A-A 的彎矩為式(2.96)mNlRMHa ??????25.4016.879521錐齒輪 1 對軸段 5 的力作用點處的剖面 B-B 的彎矩為式(2.97)dmabH ?.9221在垂直面上,剖面 A-A 的彎矩為式(2.98)mNlRMVa ????4705.83621剖面 B-B 的彎矩為式(2.99)bV?合成后,剖面 A-A 的彎矩為式mNaVHa ??????? 4.29740)25.4016(2(2.100)剖面 B-B 的彎矩為 MbVHb ??????024.59024.5924)畫轉(zhuǎn)矩圖轉(zhuǎn)矩圖如圖 2-2 所示, 。mNT?3123圖 2-2 高速軸的結(jié)構(gòu)與受力分析(7)校核軸的強度由前文可知,相對于 B-B 剖面,A-A 剖面彎矩較大,且同時作用有轉(zhuǎn)矩,故選定 A-A 剖面為危險截面。其抗彎截面系數(shù)為 式33342.152mdW????(2.101)則彎曲應力為 式MPaa4.9.1537?(2.102)其抗扭截面系數(shù)為 式3334.0626mdWT????(2.103)