秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2010-2011學年高中數(shù)學 各章知識點總結 新人教A版必修1(高一)

上傳人:精****料 文檔編號:49013022 上傳時間:2022-01-17 格式:DOC 頁數(shù):10 大小:381KB
收藏 版權申訴 舉報 下載
2010-2011學年高中數(shù)學 各章知識點總結 新人教A版必修1(高一)_第1頁
第1頁 / 共10頁
2010-2011學年高中數(shù)學 各章知識點總結 新人教A版必修1(高一)_第2頁
第2頁 / 共10頁
2010-2011學年高中數(shù)學 各章知識點總結 新人教A版必修1(高一)_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2010-2011學年高中數(shù)學 各章知識點總結 新人教A版必修1(高一)》由會員分享,可在線閱讀,更多相關《2010-2011學年高中數(shù)學 各章知識點總結 新人教A版必修1(高一)(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2010-2011學年高一數(shù)學必修1各章知識點總結 第一章 集合與函數(shù)概念 集合的中元素的三個特性:確定性、互異性、無序性 集合的表示:{ … } 如:{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} (2) 集合的表示方法: u 注意:常用數(shù)集及其記法: 非負整數(shù)集(即自然數(shù)集) 記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R 列舉法:{a,b,c……} 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR| x-3>2} ,{x| x-3>2} 語言

2、描述法:例:{不是直角三角形的三角形} 集合的分類: (1) 有限集 含有有限個元素的集合 (2) 無限集 含有無限個元素的集合 (3) 空集 不含任何元素的集合  例:{x|x2=-5} 集合間的基本關系 1.“包含”關系—子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2.“相等”關系:A=B (5≥5,且5≤5,則5=5) ① 任何一個集合是它本身的子集。AA ②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作AB(或BA) ③如果 AB, B

3、C ,那么 AC ④ 如果AB 同時 BA 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 u 有n個元素的集合,含有2n個子集,2n-1個真子集 集合的運算 運算類型 交 集 并 集 補 集 定 義 由所有屬于A且屬于B的元素組成的集合,叫A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}. 由所有屬于集合A或屬于集合B的元素組成的集合,叫A,B的并集.記作:AB(讀作‘A并B’),即AB ={x|xA,或xB}). 設S是一個集合,A是S的一個子集,由S

4、中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) S A 記作,即 CSA= 韋 恩 圖 示 S A 性 質(zhì) AA=A AΦ=Φ AB=BA AA=A AΦ=A AB=BA (CuA) (CuB)= Cu (AB) (CuA) (CuB)= Cu(AB) A(CuA)=U A(CuA)= Φ. 例題: 1.下列四組對象,能構成集合的是 ( ) A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數(shù)等于它自身

5、的實數(shù) 2.集合{a,b,c }的真子集共有 個 3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是 . 4.設集合A=,B=,若AB,則的取值范圍是 5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人, 兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。 6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= . 7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x

6、| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值 函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域. 注意: 定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。 求函數(shù)的定義域時列不等式組的主要依據(jù)是: (1)分式的分母不等于零; (2)偶次方根的被開

7、方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零; (4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數(shù)為零底不可以等于零, (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義. u 相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致 (兩點必須同時具備) 值域 : 先考慮其定義域 (1)觀察法 (2)配方法(3)代換法 函數(shù)圖象知識歸納 (1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標

8、,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上 . 常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 映射 一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關系):A(原象)B(象)” 對于映射f:A→B來說,則應滿足: (1)集合A中

9、的每一個元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中對應的象可以是同一個; (3)不要求集合B中的每一個元素在集合A中都有原象。 分段函數(shù) (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。 (2)各部分的自變量的取值情況. (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數(shù) 如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數(shù)。 函數(shù)的性質(zhì) 1.函數(shù)的單調(diào)性(局部性質(zhì)) (1)增函數(shù) 設函數(shù)y=f(x)的定義域為I,如果

10、對定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1

11、單調(diào)區(qū)間與單調(diào)性的判定方法 (A) 定義法: 任取x1,x2∈D,且x1

12、函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).奇函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). (3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱. 利用定義判斷函數(shù)奇偶性的步驟: 首先確定函數(shù)的定義域,并判斷其是否關于原點對稱; 確定f(-x)與f(x)的關系; 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x

13、)是奇函數(shù). 注意:函數(shù)定義域關于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)由 f(-x)f(x)=0或f(x)/f(-x)=1來判定; (3)利用定理,或借助函數(shù)的圖象判定 . 9、函數(shù)的解析表達式 (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域. (2)求函數(shù)的解析式的主要方法有: 1) 湊配法 2) 待定系數(shù)法 3) 換元法 4) 消參法 10.函數(shù)最大(?。┲担ǘx見課本p36頁) 利用二次

14、函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(?。┲? 利用圖象求函數(shù)的最大(?。┲? 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲担? 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b); 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數(shù)的定義域 ⑴ ⑵ 2.設函數(shù)的定義域為,則函數(shù)的定義域為_ _ 3.若函數(shù)的定義域為,則函數(shù)的定義域是 4.函數(shù) ,若,則=

15、 5.求下列函數(shù)的值域: ⑴ ⑵ (3) (4) 6.已知函數(shù),求函數(shù),的解析式 7.已知函數(shù)滿足,則= 。 8.設是R上的奇函數(shù),且當時,,則當時= 在R上的解析式為 9.求下列函數(shù)的單調(diào)區(qū)間: ⑴ ⑵ ⑶ 10.判斷函數(shù)的單調(diào)性并證明你的結論. 11.設函數(shù)判斷它的奇偶性并且求證:. 第二章 基本初等函數(shù) 指數(shù)與指數(shù)冪的運算 1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*. u 負數(shù)沒有偶次

16、方根;0的任何次方根都是0,記作。 當是奇數(shù)時,,當是偶數(shù)時, 分數(shù)指數(shù)冪 正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定: , u 0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義 3.實數(shù)指數(shù)冪的運算性質(zhì) (1) ; (2) ; (3) . (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) a>1 0

17、偶函數(shù) 函數(shù)圖象都過定點(0,1) 函數(shù)圖象都過定點(0,1) 注意:利用函數(shù)的單調(diào)性,結合圖象還可以看出: (1)在[a,b]上,值域是或; (2)若,則;取遍所有正數(shù)當且僅當; (3)對于指數(shù)函數(shù),總有; 對數(shù)函數(shù) (一)對數(shù) 1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(— 底數(shù),— 真數(shù),— 對數(shù)式) 說明: 注意底數(shù)的限制,且; ; 注意對數(shù)的書寫格式. 兩個重要對數(shù): 常用對數(shù):以10為底的對數(shù); 自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù). u 指數(shù)式與對數(shù)式的互化 冪值 真數(shù)

18、 = N= b 底數(shù) 指數(shù) 對數(shù) 對數(shù)的運算性質(zhì) 如果,且,,,那么: + -; . 注意:換底公式 (,且;,且;). 利用換底公式推導下面的結論 (1);(2). 對數(shù)函數(shù) 1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞). 注意: 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:, 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù). 對數(shù)函數(shù)對底數(shù)的限制:,且. 2、對數(shù)函數(shù)的性質(zhì)

19、: a>1 0

20、逼近軸正半軸. 例題: 1. 已知a>0,a0,函數(shù)y=ax與y=loga(-x)的圖象只能是       (  )         2.計算: ① ;②= ;= ; ③ = 3.函數(shù)y=log(2x2-3x+1)的遞減區(qū)間為 4.若函數(shù)在區(qū)間上的最大值是最小值的3倍,則a= 5.已知,(1)求的定義域(2)求使的的取值范圍 第三章 函數(shù)的應用 1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。 2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。 即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點. 3、函數(shù)零點的求法: (代數(shù)法)求方程的實數(shù)根; (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點. 4、二次函數(shù)的零點: 二次函數(shù). (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點. (2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點. (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!