《數(shù)學(xué)蘇教版選修21橢圓的標(biāo)準(zhǔn)方程 第1課時(shí)ppt》由會員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)蘇教版選修21橢圓的標(biāo)準(zhǔn)方程 第1課時(shí)ppt(17頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、如何精確地設(shè)計(jì)、制作、建造出現(xiàn)實(shí)生活中這些橢圓形的如何精確地設(shè)計(jì)、制作、建造出現(xiàn)實(shí)生活中這些橢圓形的物件呢?物件呢?生生活活中中的的橢橢圓圓1 1 動畫演示:動畫演示:MF1+MF2=2a (2a2c0, F1F2=2c) 回憶在必修回憶在必修2中是如何求圓的方程的中是如何求圓的方程的 探討建立平面直角坐標(biāo)系的方案探討建立平面直角坐標(biāo)系的方案建立平面直角坐標(biāo)系通常遵循的原則:建立平面直角坐標(biāo)系通常遵循的原則:對稱、對稱、“簡潔簡潔”O(jiān)xyOxyOxyMF1F2方案一方案一F1F2方案二方案二OxyMOxy解:取過焦點(diǎn)解:取過焦點(diǎn)F1、F2的直線為的直線為x軸,線段軸,線段F1F2的垂直的垂直平
2、分線為平分線為y軸,軸,建建立平面直角坐標(biāo)系立平面直角坐標(biāo)系(如圖如圖). 設(shè)設(shè)M(x, y)是橢圓上任意一是橢圓上任意一點(diǎn),橢圓的焦距點(diǎn),橢圓的焦距2c(c0),M與與F1和和F2的距離的和等于正的距離的和等于正常數(shù)常數(shù)2a (2a2c) ,則,則F1、F2的的坐標(biāo)分別是坐標(biāo)分別是( c,0)、(c,0) .xF1F2M0y(問題:下面怎樣(問題:下面怎樣化化簡?)簡?)aMFMF221222221)(,)(ycxMFycxMFaycxycx2)()(2222 得方程由橢圓的定義得,由橢圓的定義得,限限制條件制條件:代代入坐標(biāo)入坐標(biāo)1)橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)222222bayaxb 22ba兩
3、邊除以兩邊除以 得得).0(12222babyax設(shè)所以即,0,2222cacaca),0(222bbca由橢圓定義可知由橢圓定義可知整理得整理得2222222)()(44)(ycxycxaaycx 222)(ycxacxa 2222222222422yacacxaxaxccxaa 兩邊再平方,得兩邊再平方,得)()(22222222caayaxca移項(xiàng),再平方移項(xiàng),再平方) 0( 12222babxay總體印象:對稱、簡潔,總體印象:對稱、簡潔,“像像”直線方程的截距直線方程的截距式式012222babyax焦點(diǎn)在焦點(diǎn)在y軸:軸:焦點(diǎn)在焦點(diǎn)在x軸:軸:2)橢圓的標(biāo)準(zhǔn)方程1oFyx2FMayc
4、xycx2)()(2222axcyxcy2)()(22221 12 2yoFFMx0 12222babyax 0 12222babxay圖圖 形形方方 程程焦焦 點(diǎn)點(diǎn)F( (c,0)0)F(0(0,c) )a,b,c之間的關(guān)系之間的關(guān)系c2 2= =a2 2- -b2 2MF1+MF2=2a (2a2c0)定定 義義1 12 2yoFFMx1oFyx2FM3)兩類標(biāo)準(zhǔn)方程的對照表注注: : 共同點(diǎn):共同點(diǎn):橢圓的標(biāo)準(zhǔn)方程表示的一定是焦點(diǎn)在坐標(biāo)軸上,橢圓的標(biāo)準(zhǔn)方程表示的一定是焦點(diǎn)在坐標(biāo)軸上,中心在坐標(biāo)原點(diǎn)的橢圓;中心在坐標(biāo)原點(diǎn)的橢圓;方程的左邊是平方和,右邊是方程的左邊是平方和,右邊是1.2x2
5、y不同點(diǎn):焦點(diǎn)在不同點(diǎn):焦點(diǎn)在x軸的橢圓軸的橢圓 項(xiàng)分母較大項(xiàng)分母較大. 焦點(diǎn)在焦點(diǎn)在y軸的橢圓軸的橢圓 項(xiàng)分母較大項(xiàng)分母較大.例例1、已知橢圓的方程為:已知橢圓的方程為: ,請,請?zhí)羁眨禾羁眨?1) a=_,b=_,c=_,焦點(diǎn)坐標(biāo)為,焦點(diǎn)坐標(biāo)為_,焦距等于,焦距等于_.(2)若若C為橢圓上一點(diǎn),為橢圓上一點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),分別為橢圓的左、右焦點(diǎn), 并且并且CF1=2,則則CF2=_. 1162522yx變題:變題: 若橢圓的方程為若橢圓的方程為 ,試口答完成(試口答完成(1).14491622 yx若方程若方程 表示焦點(diǎn)在表示焦點(diǎn)在y軸上的橢圓,軸上的橢圓,求求k的取值
6、范圍的取值范圍;13222kykx探究探究:若方程表示橢圓呢若方程表示橢圓呢?5436(-3,0)、(3,0)8116922yx例例2、寫出適合下列條件的橢圓的標(biāo)準(zhǔn)方程、寫出適合下列條件的橢圓的標(biāo)準(zhǔn)方程 (1) a =4,b=1,焦點(diǎn)在,焦點(diǎn)在 x 軸軸上上; (2) a =4,b=1,焦點(diǎn)在坐標(biāo)軸上;,焦點(diǎn)在坐標(biāo)軸上; (3) 兩個(gè)焦點(diǎn)的坐標(biāo)是(兩個(gè)焦點(diǎn)的坐標(biāo)是( 0 ,-2)和()和( 0 ,2),并且經(jīng)),并且經(jīng) 過點(diǎn)過點(diǎn)P( - -1.5 ,2.5).解解: 因?yàn)闄E圓的焦點(diǎn)在因?yàn)闄E圓的焦點(diǎn)在y軸上,軸上, 設(shè)它的標(biāo)準(zhǔn)方程為設(shè)它的標(biāo)準(zhǔn)方程為 )0(12222babxay c=2,且 c2
7、= a2 - b2 4= a2 - b2 又又橢圓經(jīng)過點(diǎn)橢圓經(jīng)過點(diǎn)2523, 1)()(22232225ba聯(lián)立聯(lián)立可求得:可求得:6,1022ba11622 yx橢圓的橢圓的標(biāo)準(zhǔn)方程為標(biāo)準(zhǔn)方程為 161022xy(法一法一)xyF1F2P11622yx11622 yx或(法二法二) 因?yàn)闄E圓的焦點(diǎn)在因?yàn)闄E圓的焦點(diǎn)在y軸上,所以設(shè)它的軸上,所以設(shè)它的標(biāo)準(zhǔn)方程為標(biāo)準(zhǔn)方程為由橢圓的定義知,由橢圓的定義知,.6410,2.10,10210211023)225()23()225()23(22222222cabcaa又所以所求橢圓的標(biāo)準(zhǔn)方程為所以所求橢圓的標(biāo)準(zhǔn)方程為.161022xy)0(12222ba
8、bxay變題變題(1)(1)如右圖所示的運(yùn)油車上的貯油如右圖所示的運(yùn)油車上的貯油罐橫截面的外輪廓線是一個(gè)橢圓,罐橫截面的外輪廓線是一個(gè)橢圓,它的焦距為它的焦距為2.4m,外輪廓線上的點(diǎn),外輪廓線上的點(diǎn)到兩個(gè)焦點(diǎn)距離的和為到兩個(gè)焦點(diǎn)距離的和為3m,求這,求這個(gè)橢圓的標(biāo)準(zhǔn)方程個(gè)橢圓的標(biāo)準(zhǔn)方程. 求橢圓的標(biāo)準(zhǔn)方程求橢圓的標(biāo)準(zhǔn)方程(1 1)首先要判斷焦點(diǎn)位置,設(shè)出標(biāo)準(zhǔn)方程)首先要判斷焦點(diǎn)位置,設(shè)出標(biāo)準(zhǔn)方程(定位)(2 2)根據(jù)橢圓定義或待定系數(shù)法求)根據(jù)橢圓定義或待定系數(shù)法求a, ,b (定量)實(shí)質(zhì):已知2c=2.4,2a=3課堂練習(xí):課堂練習(xí):11625)2(22yx11)3(2222mymx116
9、16)1(22yx0225259)4(22yx123)5(22yx11624)6(22kykx1.口答:下列方程哪些表示橢圓?口答:下列方程哪些表示橢圓?22,ba 若是若是,則判定其焦點(diǎn)在何軸?則判定其焦點(diǎn)在何軸?并指明并指明 ,寫出焦點(diǎn)坐標(biāo),寫出焦點(diǎn)坐標(biāo).?求橢圓標(biāo)準(zhǔn)方程的方法求橢圓標(biāo)準(zhǔn)方程的方法一種方法:一種方法:二類方程二類方程:三個(gè)意識:三個(gè)意識:求美意識,求美意識, 求簡意識,前瞻意識求簡意識,前瞻意識探究與拓展:介紹一種畫橢圓的儀器探究與拓展:介紹一種畫橢圓的儀器. 12222byax0 12222babxay謝謝大家!謝謝大家!直接平方直接平方,得:,得:2222222224)
10、()(2)()(aycxycxycxycx222222222)()()(aycxycxcyx222222222)(2 )()(cyxaycxycx222222224222222)()(444)(cyxcyxaaxccyx2242222)(xcacyxa)()(22222222caayaxca2222222)()(44)(ycxycxaaycx 222)(ycxacxa 2222222222422yacacxaxaxccxaa 兩邊再平方,得兩邊再平方,得)()(22222222caayaxca移項(xiàng),再平方移項(xiàng),再平方分子有理化分子有理化,得:,得:)2(2)()(2222acxycxycx整理得acxaycx22)(2),2() 1 (22得再平方整理即得再平方整理即得aycxycxcx2)()(42222)()(22222222caayaxca) 1 (2)()(2222aycxycxF1F2CD