《高考數(shù)學專題復習 專題一第1講 集合、常用邏輯用語課件》由會員分享,可在線閱讀,更多相關《高考數(shù)學專題復習 專題一第1講 集合、常用邏輯用語課件(44頁珍藏版)》請在裝配圖網上搜索。
1、專題一 集合、常用邏輯用語、函數(shù)與導數(shù)、不等式第1節(jié) 集合、常用邏輯用語自主學習導引真題感悟解 析 首 先 用 區(qū) 間 表 示 出 集 合 B , 再 用 數(shù) 軸 求A(RB)解x22x30得1x3,B1,3,則RB(,1)(3,),A(RB)(3,4)答案B答案D高考對集合的考查主要集中在集合的運算與集合間關系的判定與應用,常用邏輯用語考查知識面十分廣泛,可以涵蓋函數(shù)、立體幾何、不等式、向量、三角函數(shù)等內容考查的形式多為選擇題,難度不大,但需掌握基本知識與方法考題分析網絡構建高頻考點突破考點一:集合的概念與運算【例1】(1)(2012朝陽二模)已知集合A0,1,B1,0,a3,且AB,則a等
2、于A1B0 C2 D3審題導引(1)利用子集的定義求解;(2)解出A,然后借助于數(shù)軸解決;(3)觀察圖形,求得陰影部分表示的集合,解出A,B并求解答案(1)C(2)D(3)B【規(guī)律總結】解答集合間的關系判定與運算問題的一般思路(1)正確理解各個集合的含義,認清集合元素的屬性、代表的意義(2)根據(jù)集合中元素的性質化簡集合(3)在進行集合的運算時要盡可能地借助Venn圖和數(shù)軸使抽象問題直觀化一般規(guī)律為:若給定的集合是不等式的解集,用數(shù)軸求解;若給定的集合是點集,用數(shù)形結合法求解;若給定的集合是抽象集合,用Venn圖求解易錯提示(1)準確理解集合中代表元素的屬性,以求解有關不等式(如例1中的第(3)
3、題,集合B表示函數(shù)yln(1x)的定義域)(2)在借助于數(shù)軸進行集合的運算時,要標清實點還是虛點,避免漏解或增解(如例1中的第(2)題)【變式訓練】答案C答案D考點二:命題與邏輯聯(lián)結詞【例2】(1)(2012濰坊模擬)命題:“若x21,則1x1”的逆否命題是A若x21,則x1,或x1B若1x1,則x21C若x1,或x1,則x21D若x1,或x1,則x21(2)若p是真命題,q是假命題,則Apq是真命題 Bpq是假命題C綈p是真命題 D綈q是真命題審題導引(1)按照四種命題的定義即可解決;(2)由復合命題的真值表判定規(guī)范解答(1)“1x1”的否定是x1,或x1.又由逆否命題的定義,原命題的逆否命
4、題為:若x1,或x1,則x21.(2)由條件知,綈p是假命題,綈q是真命題,故選D.答案(1)D(2)D【規(guī)律總結】命題真假的判定方法(1)一般命題p的真假由涉及到的相關交匯知識辨別(2)四種命題的真假的判斷根據(jù):一個命題和它的逆否命題同真假,而與它的其他兩個命題的真假無必然聯(lián)系(3)形如p或q、p且q、綈p命題的真假根據(jù)真值表判定【變式訓練】3(2012衡水模擬)命題A:若函數(shù)yf(x)是冪函數(shù),則函數(shù)yf(x)的圖象不經過第四象限那么命題A的逆命題、否命題、逆否命題這三個命題中假命題的個數(shù)是A0 B1 C2 D3解析易知命題A是真命題,其逆否命題也是真命題,A的逆命題與否命題都是假命題答案
5、C答案D考點三:量詞、含有量詞的命題的否定審題導引對全稱命題與特稱命題真假的判定,要結合具體的知識進行,要特別注意思維的嚴謹性答案B【規(guī)律總結】全稱命題與特稱命題的判斷方法對于特稱命題的判斷,只要能找到符合要求的元素使命題成立,即可判斷該命題成立;對于全稱命題的判斷,必須對任意元素證明這個命題為真,也就是證明一個一般性的命題成立時,方可證明該命題成立,而只要找到一個特殊元素使命題為假,即可判斷該命題不成立易錯提示注意對數(shù)函數(shù)、指數(shù)函數(shù)、三角函數(shù)、不等式、方程等知識在解題中的應用,在判斷由這些知識組成的全稱或者特稱命題時,要特別注意對數(shù)函數(shù)的定義域、指數(shù)函數(shù)的值域、三角函數(shù)的定義域和周期性、不等
6、式成立的條件等【變式訓練】答案D考點四:充分必要條件【例4】(1)(2012黃岡模擬)已知條件p:x1,條件q:1,則綈p是q的A充分不必要條件 B必要不充分條件C充要條件 D既非充分也非必要條件審題導引(1)求出綈p與q中x的范圍后,再判斷;(2)先解p與q中的不等式,然后利用數(shù)軸求解規(guī)范解答(1)綈p:x1,又易知q:x0或x1,綈p是q的充分不必要條件答案(1)A(2)D【規(guī)律總結】充分必要條件的判定方法(1)充要關系的判斷就是在兩個條件之間互推,當問題為A是B的什么條件時,如果AB,反之不成立的話,則A是B的充分不必要條件(B是A的必要不充分條件);如果BA,反之不成立的話,則A是B的
7、必要不充分條件(B是A的充分不必要條件);若AB,則A,B互為充要條件(2)充要關系可以從集合的觀點理解,即若滿足命題p的集合為M,滿足命題q的集合為N,則M是N的真子集等價于p是q的充分不必要條件,N是M的真子集等價于p是q的必要不充分條件,MN等價于p和q互為充要條件,M,N不存在相互包含關系等價于p既不是q的充分條件也不是q的必要條件易錯提示充分必要條件的判斷應注意問題的設問方式,我們知道:A是B的充分不必要條件是指:AB且BDA;A的充分不必要條件是B是指:BA且AD B.在解題中一定要弄清它們的區(qū)別,以免出現(xiàn)錯誤【變式訓練】7(2012咸陽二模)下面四個條件中,使ab成立的充分而不必
8、要的條件是Aab1 Bab1Ca2b2 Da3b3解析ab1b,ab1是ab的充分條件,但當ab時不能推出ab1,故選A.答案A答案A名師押題高考答案B押題依據(jù)高考對集合的考查集中在三個方面:集合的表示方法,元素的性質特征與集合的運算本題與不等式的解法交匯命題、綜合性較強重點考查集合的運算,難度不大,但重點突出,立意新穎,故押此題【押題2】已知命題p1:當x,yR時,|xy|x|y|成立的充要條件是xy0.p2:函數(shù)y2x2x在R內為減函數(shù),則在命題q1:p1p2,q2:p1p2,q3:(綈p1)p2和q4:p1(綈p2)中,真命題是Aq1,q3Bq2,q3Cq1,q4Dq2,q4答案C押題依據(jù)常用邏輯用語重要的數(shù)學基礎知識,是高考考查的熱點,本題綜合考查了命題的真假判斷,充分必要條件及邏輯聯(lián)結詞,題目難度適中,體現(xiàn)了對基礎知識,重點知識的考查,故押此題課時訓練提能課時訓練提能本講結束請按ESC鍵返回