《初中數(shù)學九年級上冊《花邊有多寬》》由會員分享,可在線閱讀,更多相關《初中數(shù)學九年級上冊《花邊有多寬》(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課題
2.1花邊有多寬
課型
新授課
授課人
課
程
目
標
重點難點¥¥方法
L知識技能達成目標
通過一些具體的情境抽象出元二次方程轉(zhuǎn)化為一般形式;2.過程方法揭示目標
二次方程的概念的過程,以及理解和認識;并會將一
經(jīng)歷感受觀察、說理、交流、類比等過程,進一步體會方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效數(shù)學模型;
3.情感態(tài)度孕育目標
學生在自主探索,合作交流中獲得成功的經(jīng)驗,樹立自信心;感受數(shù)學與生活的密切聯(lián)系,增強用數(shù)學的意識.
重點:讓學生理解
二次方程的概念,和轉(zhuǎn)化為一般形式;
難點:根據(jù)題意列出方程,理解體會
二次方程刻畫數(shù)量關系的有效數(shù)學模型
2、
引導發(fā)現(xiàn),利用類比的方法;自主探究和小組合作交流
教學內(nèi)容
第一環(huán)節(jié):發(fā)現(xiàn)新知
1.同學們我校是一個環(huán)境優(yōu)美,綠化面積很好的學校,其中我們引以為豪的長方形的草坪足球場的周長為310米,
和寬之差為25米,你能計算出它的長和寬嗎?
2.我校的中心花壇的噴泉四周有寬度相
等的花邊包圍,它的長為6米,寬為
米,如果中間部分的面積為22m2,那么花邊的寬為多少米?
3.如圖,一個長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為
8m.梯子的頂端下滑端滑動多少米?第二環(huán)節(jié):探索新知
一元一次居
1m.那么梯子的底
概
念.
[1拾有一個未知數(shù);
[2抹知數(shù)的次數(shù)
3、曷次.
[3]整式方程
類比
一足衣腌
[1拾有一個未知數(shù);
[2抹知數(shù)的最高次數(shù)是
次.
[3也式方程4
把ax?+bx+c=。。,b,c為常數(shù).
a—0
)稱為一元二次方程的一般形式
其中ax?為二次項b的一次項;c為常數(shù)項,a、b分別稱為二次項系數(shù)和一次項系數(shù)
第三環(huán)節(jié):應用新知
[1]把方程2x(x-5)=2化為一元二次
方程的一般形式
,其中二次項為
系數(shù)—,一次項為—系數(shù)_,常數(shù)項為一補充練習:
[2](4x-5)(4x+5)=0[3](3x+2)2=4(x-3)
教師活動對于生活中一些問題的解決,當我們確定未知量的值時,往往從實際問題中尋找等量
4、關系從而借助方程”構(gòu)建數(shù)學模型解決問題.
引導學生對方程進行整理,提問運用的什么方法.
提出問題:對于一般式中的a、b、c,你認為可否為任意數(shù).
指導糾正
提問:運用什么方法整理的?
學生活動
認真思考,小組交流.列出一元一次方程.
按照老師的要求解決問題,小組合作完成.
通過類比的方法歸納總結(jié)概念.理解一般形式.
小組合作探究.
獨立完成第一個,小組合作交流2、3題.
設計意圖
從學生熟悉的學校環(huán)境入手,激發(fā)學生的學習興趣,讓學生復習的過程中為下一步運用類比的思
想總結(jié)出一打下基礎.
二次方程
從兩個生活的實際出發(fā),旨在讓學生感受研究一元二次方程是來自現(xiàn)實的需要
5、.
培養(yǎng)學生運用類比的方法得出概念體會數(shù)學內(nèi)容之間的聯(lián)系,初步認識從一般到特殊的辨證關系.
認識不同類型的方程為以后解方程做好鋪墊.
通過不同轉(zhuǎn)化方法提高學生的分析解決問題的能力,為以后解方程做好鋪墊.
知識源于悟-----悟概念
[4]卜列方程中,,定是關」,x的一兀二
次方程的是()
2_2_1,1c
A.x+3x-1=x
6、B.-+—=0
-2,-r乂2-乂-
C.ax+bx+c=0D.x-3x=7
[5]當m取何值時,方程xm-3+2mx+3=0
提問:能否指出的常數(shù)項.
D
思考回答,說明理由
加深對概念的理解.
是關于x的一兀二次方程?
指導糾正
交流平臺:
簡單的解釋
思考回答問
通過對平方差的理解,
關于x的方程(m-1)x2+(m+1)x-2=0,那
題
加深對a的認識,培養(yǎng)
么當m時,方程為一兀二次
學生靈活解決問題的
方程.小紅觀點:m為任意實數(shù).
能力,為后邊利用公式
小明觀點:當mw1時,方程為二
7、
法解方程作個小鋪墊.
次方程;
通過給學生創(chuàng)設一個
你同意他們的觀點嗎?說明理由.
指導糾正
交流平臺,讓學生在交
拓展延伸:
小組合作交
流合作中相互學習,共
x的方(m-1)x+(m+1)x-2=0,
流.說明理
同提高.
那么當m—時,方程為,兀二次方程.
由.
賽一賽走進生活一列方程
解決:-x2+6x-7=0
[1]已知兩個數(shù)的和是6,積是7,求
是否還啟其它的
這兩個數(shù)?
表小方式?
【2】數(shù)字之間有著奇妙的關系,有五
進一步培養(yǎng)學生分析
8、個連續(xù)整數(shù),它們前二個數(shù)的平方和等
問題、解決問題的能
于后兩個數(shù)的平方和,你能求出它們是
指導糾正
力,體會從實際問題中
誰嗎,說出你的做法.
要求指出【3】
的
認真觀察回
尋找等量關系從而借
【3】在暑假期間,為了加強交流,關
一W式.
答問題.
助方程”構(gòu)建數(shù)學模型
注安全問題,要求同學們相互打電話問
是解決問題的啟效手
候,據(jù)統(tǒng)計某班共打電話2550次,你
段.
知道該班有多少學生嗎?
第四環(huán)節(jié):小結(jié)鞏固
同學們?nèi)绾闻小簜€方程是一兀二次
歸納總結(jié)
獨立完成后
9、
通過提問問題方式對
方程?一般形式呢?應注意什么問
小組進行交
本節(jié)課進行梳理,加深
題?
流.
學生理解記憶.
五、鞏固新知
從前有一天,一個醉漢拿著竹竿進屋,
橫拿豎拿都進不去,橫著比門框?qū)?
指導糾正
尺,豎著比門框高2尺,另一個醉漢教
他沿著門的兩個對角斜著拿竿,這個醉
體會古人的智慧,進一
漢一試,不多不少剛好進去了.你知道
步感受數(shù)學來源于生
竹竿有多長嗎?請根據(jù)這一問題列出
活,并服務于生活.
方程.六、布置作業(yè)
1、(ABC)課本習題2.1新課堂
談收獲、感
2、AB配套練習
悟、質(zhì)疑.
分析問題、
解決問題.