《數(shù)學物理方法 課件教案》由會員分享,可在線閱讀,更多相關《數(shù)學物理方法 課件教案(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、數(shù)學物理方法數(shù)學物理方法 課程的內(nèi)容課程的內(nèi)容三種方程、 四種求解方法、 二個特殊函數(shù)分離變量法、行波法、積分變換法、格林函數(shù)法波動方程、熱傳導、拉普拉斯方程貝賽爾函數(shù)、勒讓德函數(shù) 數(shù)學物理方程定義數(shù)學物理方程定義描述某種物理現(xiàn)象的數(shù)學微分方程。一、一、 基本方程的建立基本方程的建立第一章第一章 數(shù)學物理方程的一些數(shù)學物理方程的一些基本知識基本知識二、二、 定解條件的推導定解條件的推導三、三、 定解問題的概念定解問題的概念一、一、 基本方程的建立基本方程的建立條件:均勻柔軟的細弦,在平衡位置附近產(chǎn)生振幅極小的 橫振動。不受外力影響。例例1、弦的振動、弦的振動研究對象:線上某點在 t 時刻沿縱向
2、的位移。( , )u x t簡化假設:(2)振幅極小, 張力與水平方向的夾角很小。(1)弦是柔軟的,弦上的任意一點的張力沿弦的切線方向。cos1cos1 gds M M ds x T y xdx x T 牛頓運動定律:sinsinTTgdsma橫向:coscosTT縱向:( , )sintan(d , )sintanu x txu xx tx其中:TT(d , )( , )u xx tu x tTgdsmaxx22(d , )( , )( , )ddu xx tu x tu x tTg xxxxt其中:ddsx22( , )mdsu x tat22(d , )( , )( , )( , )dd
3、u xx tu x tu x tu x txxxxxxx2222( , )( , )ddux tu x tTgxxxt其中:2222( , )( , )ddux tu x tTgxxxt2222( , )( , )Tux tu x tgxt22222uuagtx一維波動方程2Ta 令:-非齊次方程非齊次方程自由項22222uuatx-齊次方程齊次方程忽略重力作用:例例2 2、熱傳導、熱傳導所要研究的物理量:溫度 ),(tzyxu根據(jù)熱學中的傅立葉試驗定律在dt時間內(nèi)從dS流入V的熱量為:從時刻t1到t2通過S流入V的熱量為 tSukQttSdd211 高斯公式(矢量散度的體積分等于該矢量的沿著
4、該體積的面積分) tVukQttVdd2121 tSnukQdddtSnukddtSukdd熱傳導現(xiàn)象:當導熱介質(zhì)中各點的溫度分布不均勻時,有熱量從高溫處流向低溫處。熱場MSSVntVukQttVdd2121 ),(1tzyxu),(2tzyxuVtzyxutzyxucQVd),(),(12221QQ 流入的熱量導致V內(nèi)的溫度發(fā)生變化 2121dddd2ttVttVtVtuctVuktucuk22ukutc02 ufuatu22流入的熱量:溫度發(fā)生變化需要的熱量為:VttucVttdd21 21ddttVtVtuc22au熱傳導方程熱場MSSVn同一類物理現(xiàn)象中,各個具體問題又各有其特殊性。邊
5、界條件和初始條件反映了具體問題的特殊環(huán)境和歷史,即個性。初始條件:能夠用來說明某一具體物理現(xiàn)象初始狀態(tài)的條件。邊界條件:能夠用來說明某一具體物理現(xiàn)象邊界上的約束情況的條件。二、定解條件的推導二、定解條件的推導其他條件:能夠用來說明某一具體物理現(xiàn)象情況的條件。初始時刻的溫度分布:B、熱傳導方程的初始條件0(, )|()tu M tMC、泊松方程和拉普拉斯方程的初始條件不含初始條件,只含邊界條件條件A、 波動方程的初始條件00|( )( )ttuxuxt1、初始條件、初始條件描述系統(tǒng)的初始狀態(tài)描述系統(tǒng)的初始狀態(tài)系統(tǒng)各點的初位移系統(tǒng)各點的初速度(2)自由端:x=a 端既不固定,又不受位移方向力的作用
6、。2、邊界條件、邊界條件描述系統(tǒng)在邊界上的狀況描述系統(tǒng)在邊界上的狀況A、 波動方程的邊界條件(1)固定端:對于兩端固定的弦的橫振動,其為:0|0,xu( , )0u a t 或:0 x auTx0 x aux( , )0 xu a t (3) 彈性支承端:在x=a端受到彈性系數(shù)為k 的彈簧的支承。x ax auTkux 或0 x auuxB、熱傳導方程的邊界條件(1) 給定溫度在邊界上的值|sufS給定區(qū)域v 的邊界(2) 絕熱狀態(tài)0sun(3)熱交換狀態(tài)牛頓冷卻定律:單位時間內(nèi)從物體通過邊界上單位面積流到周圍介質(zhì)的熱量跟物體表面和外面的溫差成正比。11()d dd dudQk uuS tkS
7、 tn 交換系數(shù); 周圍介質(zhì)的溫度1k1u1SSuuun1kk第一類邊界條件第二類邊界條件第三類邊界條件1 1、定解問題、定解問題三、定解問題的概念三、定解問題的概念(1) 初始問題:只有初始條件,沒有邊界條件的定解問題;(2) 邊值問題:沒有初始條件,只有邊界條件的定解問題;(3) 混合問題:既有初始條件,也有邊界條件的定解問題。 把某種物理現(xiàn)象滿足的偏微分方程和其相應的定解條件結合在一起,就構成了一個定解問題。定解問題的檢驗定解問題的檢驗 解的存在性:定解問題是否有解;解的唯一性:是否只有一解;解的穩(wěn)定性:定解條件有微小變動時,解是否有相應 的微小變動。3 3、線性偏微分方程的分類、線性偏
8、微分方程的分類 按未知函數(shù)及其導數(shù)的系數(shù)是否變化分為常系數(shù)和變系數(shù)微分方程 按自由項是否為零分為齊次方程和非齊次方程2 2、微分方程一般分類、微分方程一般分類 (1) 按自變量的個數(shù),分為二元和多元方程;(2) 按未知函數(shù)及其導數(shù)的冪次,分為線性微分方程和 非線性微分方程;(3) 按方程中未知函數(shù)導數(shù)的最高階數(shù),分為一階、二階 和高階微分方程。線性方程的解具有疊加特性 iifLu ffiuuifLu 0iLuuui0Lu4 4、疊加原理、疊加原理 幾種不同的原因的綜合所產(chǎn)生的效果等于這些不同原因單獨產(chǎn)生的效果的累加。(物理上)xxuatu2222222222uuauxt222uuaxuxt222110uu判斷下列方程的類型思考5 5、微分方程的解、微分方程的解 古典解:如果將某個函數(shù) u 代入偏微分方程中,能使方程成為恒等式,則這個函數(shù)就是該偏微分方程的解。通解: 解中含有相互獨立的和偏微分方程階數(shù)相同的任意常數(shù)的解。 特解: 通過定解條件確定了解中的任意常數(shù)后得到的解。 形式解:未經(jīng)過驗證的解為形式解。 6 6、求解方法、求解方法分離變量法、行波法、積分變換法、格林函數(shù)法