2019-2020年高三數(shù)學(xué) 專題7 平面向量練習(xí).doc
《2019-2020年高三數(shù)學(xué) 專題7 平面向量練習(xí).doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué) 專題7 平面向量練習(xí).doc(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué) 專題7 平面向量練習(xí) 一、前測訓(xùn)練 1. (1)已知向量a=(0,2),|b|=2,則|a-b|的取值范圍是 . (2)若a是平面內(nèi)的單位向量,若向量b滿足b(a-b)=0,則b的取值范圍是 . 答案:(1)[0,4].(2)[-1,1]. A B C D E 2.(1)在△ABC中,∠BAC=120,AB=2,AC=1,點(diǎn)D是邊BC上一點(diǎn),DC=2BD,E為BC邊上的點(diǎn),且=0.則= ;= . (2)如圖,在邊長為2的菱形ABCD中,BAD=60,E為CD中點(diǎn), 則= . (3)已知OA=OB=2,=0,點(diǎn)C在線段AB上,且∠AOC=60,則=________________. 答案:(1)-,.(2)1.(3)8-4. 二、方法聯(lián)想 1.向量的運(yùn)算 方法1 用向量的代數(shù)運(yùn)算. 方法2 結(jié)合向量表示的幾何圖形. 2.向量的應(yīng)用 方法1 基底法,即合理選擇一組基底(一般選取模和夾角均已知的兩個(gè)不共線向量),將所求向量均用這組基底表示,從而轉(zhuǎn)化為這兩個(gè)基向量的運(yùn)算. 方法2 坐標(biāo)法,即合理建立坐標(biāo)系,求出向量所涉及點(diǎn)的坐標(biāo),利用向量的坐標(biāo)運(yùn)算解決 三、例題分析 [第一層次] 例1 (1)若向量a=(2,3),b=(x,-6),且a∥b,則實(shí)數(shù)x= . (2)已知a,b都是單位向量,ab=-,則|a-b|= . (3)已知向量a=(-3,2),b=(-1,0),且向量λa+b與a-2b垂直,則實(shí)數(shù)λ的值是 . (4)若平面向量a,b滿足|a+b|=1,a+b平行于y軸,a=(2,-1),則b= 答案:(1)-4;(2);(3)-;(4)(-2,2)或(-2,0). 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.兩個(gè)非零向量共線的充要條件(坐標(biāo)形式和非坐標(biāo)形式). 2.單位向量與數(shù)量積的概念,求模長的基本方法. 3.向量垂直的充要條件(坐標(biāo)形式和非坐標(biāo)形式). 4.坐標(biāo)形式下向量模長的計(jì)算公式. 二、方法選擇與優(yōu)化建議: 1.第(2)小題,方法1:將所求模長平方,轉(zhuǎn)化為向量的數(shù)量積;方法2可以畫圖,通過解三角形求解;本題給出了兩個(gè)向量的模長及數(shù)量積,因此方法1求解較為簡單. 2.第(4)小題,常規(guī)方法是設(shè)出向量b的坐標(biāo),通過解方程組求解.本題可以抓住向量a+b的兩要素,先求出向量a+b的坐標(biāo),再求向量b的坐標(biāo),這個(gè)解法來得方便,突出了向量的本質(zhì). 例2 (1)在正三角形ABC中,D是BC上的點(diǎn),AB=3,BD=1,則?= . (2)在平面直角坐標(biāo)系xOy中,已知=(3,-1),=(0,2).若=0,=λ,則實(shí)數(shù)λ的值為 . (3)已知A(-3,0),B(0,),O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=60,=λ+,則實(shí)數(shù)λ的值是 . (4)在△ABC中,已知BC=2,=1,則△ABC面積的最大值是 . 答案:(1);(2)2;(3);(4). 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.解(1)小題可以是基底法(以和為基底),也可以建立直角坐標(biāo)系用坐標(biāo)法. 2.解(2)小題可以設(shè)未知數(shù)解方程,也可以畫出圖形,利用直線方程求解.理解向量共線的意義. 3.平面向量基本定理,利用圖形進(jìn)行分解,通過解三角形求解. 4.平面向量數(shù)量積的概念,建立目標(biāo)函數(shù)利用基本不等式求最值. 5.解(4)小題還可以用坐標(biāo)法,得出點(diǎn)A的軌跡方程,利用圖形的直觀性求解. 二、方法選擇與優(yōu)化建議: 1.解(1)小題顯然是基底法簡單,因?yàn)閮蓚€(gè)基底向量的模長和夾角都已知. 2.解(4)小題由于建立目標(biāo)函數(shù)有些難度,所以用坐標(biāo)法求解來得簡單易懂. 例3 (1) 向量a,b,c在正方形網(wǎng)格中的位置如圖所示.若c=λa+μb(λ,μ∈R),則= . ? A B C D E F P (2)如圖,正六邊形ABCDEF中,P是△CDE內(nèi)(包括邊界)的動(dòng)點(diǎn).設(shè)=α+β(α、β∈R),則α+β的取值范圍是 . 答案:(1)4;(2)[3,4]. 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.問題的本質(zhì)都是用兩個(gè)不共線的向量來表示第三個(gè)向量.平面向量基本定理,利用圖形進(jìn)行分解,通過解三角形求解. 2.解決這一類問題的基本方法為:(1)基底法;(2)坐標(biāo)法. 二、方法選擇與優(yōu)化建議: 1.解決這兩題用坐標(biāo)法優(yōu)于基底法. 2.選用哪一種方法,關(guān)鍵是看其中一個(gè)向量用基底來表示是否容易. [第二層次] 例1 (1)已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c= . (2)已知向量a=(2,1),ab=10,︱a+b︱=5,則︱b︱= . 變式:平面向量a與b的夾角為60,a=(2,0),|b|=1,則|a+2b|= . (3)若平面向量a,b滿足|a+b|=1,a+b平行于y軸,a=(2,-1),則b= . (4)在菱形ABCD中,若AC=4,則?= . 答案:(1)(- ,- );(2)5;變式:2.(3)(-2,2)或(-2,0);(4)-8. 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.坐標(biāo)形式下,向量共線、向量垂直的充要條件. 2.向量已知了坐標(biāo)求模長,解決模長問題的基本方法將模長平方轉(zhuǎn)化為數(shù)量積. 3.第(4)小題的求解,可以是基底法還可以坐標(biāo)法,基底法的難點(diǎn)選擇基底;坐標(biāo)法的難點(diǎn)是建立合適的直角坐標(biāo)系. 二、方法選擇與優(yōu)化建議: 1.第(2)小題,方法1:設(shè)向量b的坐標(biāo),通過解方程組求解;方法2:直接對向量(a+b)的模長平方求出答案.相對而言,方法2比較簡單. 2.第(3)小題,常規(guī)方法是設(shè)出向量b的坐標(biāo),通過解方程組求解.本題可以抓住向量a+b的兩要素,先求出向量a+b的坐標(biāo),再求向量b的坐標(biāo),這個(gè)解法來得方便,突出了向量的本質(zhì). 3.第(4)小題解法1:基底法,選擇和與垂直的為基底;解法2:以AC、BD為;兩坐標(biāo)軸建立直角坐標(biāo)系. 例2 (1)已知正△ABC的邊長為1,=7+3,則= . (2)設(shè)D,E分別是△ABC的邊AB,BC上的點(diǎn),AD=AB,BE=BC,若=λ1+λ2(λ1,λ2∈R),則λ1+λ2的值為__________。 (3)如圖,在△ABC中,∠BAC=90,AB=6,D在斜邊BC上,且CD=2DB,則的值為 . A B D C (4)已知a,b是單位向量,ab=0.若向量c滿足|c-a-b|=1,則|c|的取值范圍是 . 答案:(1)-2;(2);(3)24;(4)[-1,+1]. 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.三角形中研究邊所在向量的數(shù)量積時(shí),關(guān)注向量夾角的定義. 2.將所要表示的向量放置在三角形中,利用向量加、減法的三角形法則,突出平面向量基本定理. 3.可以關(guān)注一下向量數(shù)量積的幾何意義(投影). 4.(4)求解的方法是畫圖或者建立直角坐標(biāo)系用坐標(biāo)法. 二、方法選擇與優(yōu)化建議: 1.第(3)小題的求解,坐標(biāo)法優(yōu)于基底法.從圖形的結(jié)構(gòu)上發(fā)現(xiàn)便于建系. 2.由于向量a,b是兩個(gè)相互垂直的單位向量,用坐標(biāo)法解題通俗易懂. 例3 (1) 向量a,b,c在正方形網(wǎng)格中的位置如圖所示.若c=λa+μb(λ,μ∈R),則= . E B A C D (2)如圖,在△ABC中,AB=AC,BC=2,=,=.若=-, 則= . 答案:(1)4;(2)-. 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.一個(gè)向量用兩個(gè)基底向量來表示,平面向量基本定理. 2.解決這一類問題的基本方法為:(1)基底法;(2)坐標(biāo)法. 二、方法選擇與優(yōu)化建議: 1.第(1)小題由于不容易用基底來表示,所以用坐標(biāo)法優(yōu)于基底法. 2.第(2)小題不容易選擇基底,而且運(yùn)算過程復(fù)雜,建系則比較單一,所以用坐標(biāo)法優(yōu)于基底法. [第三層次] 例1 (1)設(shè)a、b、c是單位向量,且a+b=c,則ac的值為 . (2)若向量a,b滿足|a|=3,|b|=1,|a-2b|=,則向量a,b的夾角是 . x y A B O 1 (3)函數(shù)y=tan(x-)的部分圖象如圖所示,點(diǎn)A為函數(shù)圖象與x軸的交點(diǎn),點(diǎn)B在函數(shù)圖象上,且縱坐標(biāo)為1.則(+)?= . (4)如圖,兩塊斜邊長相等的直角三角板拼在一起,若=x+y,則x= ,y= . 答案:(1);(2);(3)6;(4)1+和 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.單位向量的概念以及數(shù)量積的定義.可以畫圖結(jié)合圖形研究,也可以通過計(jì)算,將條件變?yōu)閎=c-a,兩邊平方即得答案. 2.向量的夾角公式.設(shè)法求出向量a,b的數(shù)量積. 3.坐標(biāo)形式下向量數(shù)量積的運(yùn)算.求出點(diǎn)A、B的坐標(biāo). 4.平面向量基本定理,向量分解,解三角形求解. 例2 (1)如圖,在△ABC中,∠BAC=120,AB=2,AC=1,D是邊BC上一點(diǎn),=2,則?= . (2)如圖,平面內(nèi)有三個(gè)向量、、,其中與的夾角為120,與的夾角為30, 且||=||=1,||=2,若=λ+μ(λ,μ∈R), 則λ+μ的值為 . (3)在△ABC中,M是BC的中點(diǎn),AM=1,點(diǎn)P在AM上且滿足=2,則(+)等于 .變式:在△ABC中,M是BC的中點(diǎn),AM=1,點(diǎn)P是AM上一動(dòng)點(diǎn),則(+)的最小值等于 . D C A B 如圖 (4)如圖,在四邊形ABCD中,||+||+||=4,||||+||||=4, ?=?=0,則(+)?的值為 . 答案:(1)-;(2)6;(3);變式-:(4)4. 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.基底法求解.很顯然是以、為基底. 2.平面向量基本定理,把、看作一組基底,將非正交分解.通過解三角形求出答案. 3.平面幾何性質(zhì);向量加法的平行四邊形法則;建立目標(biāo)函數(shù)求最值. 4.結(jié)合平面幾何性質(zhì),突出向量數(shù)量積的定義. 5.突出了“數(shù)形結(jié)合”和“整體代換”等數(shù)學(xué)思想. 二、方法選擇與優(yōu)化建議: 1.解決這類問題的基本方法是:(1)基底法;(2)坐標(biāo)法。不容易找到基底或者表示起來較為復(fù)雜,計(jì)算量大,往往就用坐標(biāo)法,建立適當(dāng)?shù)淖鴺?biāo)系是難點(diǎn). A B C E F M N 圖1 例3 圖1,等腰△ABC中,AB=AC=1,A=120,E、F分別是邊AB、AC上的點(diǎn),且=m,=n,其中m、n∈(0,1),且m+4n=1.若EF、BC的中點(diǎn)分別為M、N,則||的最小值為 . 答案:. 〖教學(xué)建議〗 一、主要問題歸類與方法: 1.基底法求解.很顯然是以、為基底.通過構(gòu)造△AMN,利用向量的加減法法則設(shè)法把向量用、表示出來,將平方之后建立目標(biāo)函數(shù),通過消元研究關(guān)于m或n的二次函數(shù)的最小值. 2.坐標(biāo)法求解.以BC邊所在直線為x軸,BC邊的高所在直線為y軸,建立直角坐標(biāo)系.設(shè)法將M、N兩點(diǎn)的坐標(biāo)表示出來,利用向量坐標(biāo)形式下模長公式建立起目標(biāo)函數(shù)進(jìn)行求解. 3.基底法的難點(diǎn)是:要學(xué)會通過構(gòu)造△AMN,利用向量的加減法法則設(shè)法把向量用、表示出來. 4.坐標(biāo)法的難點(diǎn)是:首先要利用條件將E、F兩點(diǎn)的坐標(biāo)表示出來. 5.關(guān)注對目標(biāo)函數(shù)消元變形的理性思維,達(dá)到簡化運(yùn)算的目的. 二、方法選擇與優(yōu)化建議: 1.解決這類問題的基本方法是:(1)基底法;(2)坐標(biāo)法.本題的兩種解法總體難度相當(dāng),坐標(biāo)法相對比較好想一點(diǎn). 2.基底法難點(diǎn)是用基底、來表示,構(gòu)造三角形△AMN,將向量放在△AMN中研究,這種方法最為簡潔,這種做法是基于M、N分別為EF、BC的中點(diǎn),有一個(gè)向量公式,很容易將和用基底向量來表示.=(+)=( m+n),=(+).在接下來對目標(biāo)函數(shù)進(jìn)行消元變形的過程中,關(guān)注計(jì)算的理性化. 3.坐標(biāo)法的難點(diǎn)是如何利用條件將E、F兩點(diǎn)的坐標(biāo)表示出來.需要結(jié)合平面幾何中平行線分線段成比例的等一些基本性質(zhì). 四、反饋練習(xí)- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué) 專題7 平面向量練習(xí) 2019 2020 年高 數(shù)學(xué) 專題 平面 向量 練習(xí)
鏈接地址:http://www.hcyjhs8.com/p-5394792.html