(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十 立體幾何中的向量方法講義 理(重點(diǎn)生含解析).doc
《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十 立體幾何中的向量方法講義 理(重點(diǎn)生含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十 立體幾何中的向量方法講義 理(重點(diǎn)生含解析).doc(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題十 立體幾何中的向量方法 卷Ⅰ 卷Ⅱ 卷Ⅲ 2018 線面角的正弦值的求解T18(2) 二面角、線面角的正弦值的求解T20(2) 二面角的正弦值的求解T19(2) 2017 二面角的余弦值的求解T18(2) 二面角的余弦值的求解T19(2) 二面角的余弦值的求解T19(2) 2016 二面角的余弦值的求解T18(2) 二面角的正弦值的求解T19(2) 線面角的正弦值的求解T19(2) 縱向把 握趨勢(shì) 全國(guó)卷3年3年考,涉及直線與平面所成角、二面角的求解,且都在解答題中的第(2)問(wèn)出現(xiàn),難度適中.預(yù)計(jì)2019年仍會(huì)以解答題的形式考查二面角或線面角的求法. 橫向把 握重點(diǎn) 高考對(duì)此部分的命題較為穩(wěn)定,一般為解答題,多出現(xiàn)在第18或19題的第(2)問(wèn)的位置,考查利用空間向量求異面直線所成的角、線面角或二面角,難度中等偏上. [考法一 利用空間向量證明平行與垂直] 設(shè)直線l的方向向量為a=(a1,b1,c1),平面α,β的法向量分別為u=(a2,b2,c2),v=(a3,b3,c3). (1)線面平行: l∥α?a⊥u?au=0?a1a2+b1b2+c1c2=0. (2)線面垂直: l⊥α?a∥u?a=ku?a1=ka2,b1=kb2,c1=kc2. (3)面面平行: α∥β?u∥v?u=kv?a2=ka3,b2=kb3,c2=kc3. (4)面面垂直: α⊥β?u⊥v?uv=0?a2a3+b2b3+c2c3=0. 如圖,在四棱錐PABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).求證: (1)BE⊥DC; (2)BE∥平面PAD; (3)平面PCD⊥平面PAD. [破題思路] 第(1)問(wèn) 求什么 想什么 要證BE⊥DC,想到證⊥,即=0 給什么 用什么 由PA⊥底面ABCD,AD⊥AB,可知AP,AB,AD三條直線兩兩互相垂直,可用來(lái)建立空間直角坐標(biāo)系 差什么 找什么 建立坐標(biāo)系后,要證=0,缺少,的坐標(biāo),根據(jù)所建坐標(biāo)系求出B,E,D,C點(diǎn)的坐標(biāo)即可 第(2)問(wèn) 求什么 想什么 要證BE∥平面PAD,想到證與平面PAD的法向量垂直 差什么 找什么 需要求及平面PAD法向量的坐標(biāo),可根據(jù)第(1)問(wèn)建立的空間直角坐標(biāo)系求解 第(3)問(wèn) 求什么 想什么 要證平面PCD⊥平面PAD,想到證平面PCD的法向量與平面PAD的法向量垂直 差什么 找什么 缺少兩個(gè)平面的法向量,可利用(1)中所建的空間直角坐標(biāo)系求解 [規(guī)范解答]依題意知,AB,AD,AP兩兩垂直,故以點(diǎn)A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系(如圖),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E為棱PC的中點(diǎn),得E(1,1,1). (1)因?yàn)椋?0,1,1),=(2,0,0),故=0.所以BE⊥DC. (2)易知=(1,0,0)為平面PAD的法向量, 而=(0,1,1)(1,0,0)=0,所以BE⊥AB, 又BE?平面PAD,所以BE∥平面PA D. (3)=(0,2,-2),=(2,0,0), 設(shè)平面PCD的法向量為n=(x,y,z), 則即 不妨令y=1,可得n=(0,1,1)為平面PCD的一個(gè)法向量. 因?yàn)槠矫鍼AD的一個(gè)法向量=(1,0,0), 所以n=(0,1,1)(1,0,0)=0,所以n⊥. 所以平面PCD⊥平面PAD. [題后悟通] 利用空間向量證明空間垂直、平行的一般步驟 (1)建立空間直角坐標(biāo)系,建系時(shí)要盡可能地利用條件中的垂直關(guān)系. (2)建立空間圖形與空間向量之間的關(guān)系,用空間向量表示出問(wèn)題中所涉及的點(diǎn)、直線、平面的要素. (3)通過(guò)空間向量的運(yùn)算求出直線的方向向量或平面的法向量,再研究平行、垂直關(guān)系. (4)根據(jù)運(yùn)算結(jié)果解釋相關(guān)問(wèn)題. [對(duì)點(diǎn)訓(xùn)練] 如圖,在直三棱柱ABCA1B1C1中,∠ABC=90,BC=2,CC1=4,點(diǎn)E在線段BB1上,且EB1=1,D,F(xiàn),G分別為CC1,C1B1,C1A1的中點(diǎn).求證: (1)B1D⊥平面ABD; (2)平面EGF∥平面ABD. 證明:(1)根據(jù)題意,以B為坐標(biāo)原點(diǎn),BA,BC,BB1所在的直線分別為x軸,y軸,z軸建立空 間直角坐標(biāo)系,如圖 所示, 則B(0,0,0),D(0,2,2), B1(0,0,4),C1(0,2,4), 設(shè)BA=a, 則A(a,0,0), 所以=(a,0,0),=(0,2,2), =(0,2,-2), 所以=0, =0+4-4=0, 即B1D⊥BA,B1D⊥BD. 又BA∩BD=B,BA?平面ABD,BD?平面ABD, 所以B1D⊥平面ABD. (2)由(1)知,E(0,0,3),G,F(xiàn)(0,1,4), 則=, =(0,1,1), 所以=0+2-2=0, =0+2-2=0, 即B1D⊥EG,B1D⊥EF. 又EG∩EF=E,EG?平面EGF,EF?平面EGF, 因此B1D⊥平面EGF. 結(jié)合(1)可知平面EGF∥平面ABD. [考法二 利用空間向量求空間角] 1.向量法求異面直線所成的角 若異面直線a,b的方向向量分別為a,b,異面直線所成的角為θ,則cos θ=|cos〈a,b〉|=. 2.向量法求線面所成的角 求出平面的法向量n,直線的方向向量a,設(shè)線面所成的角為θ,則sin θ=|cos〈n,a〉|=. 3.向量法求二面角 求出二面角αlβ的兩個(gè)半平面α與β的法向量n1,n2,若二面角αlβ所成的角θ為銳角,則cos θ=|cos〈n1,n2〉|=;若二面角αlβ所成的角θ為鈍角,則cos θ=-|cos〈n1,n2〉|=-. 題型策略(一)求異面直線所成的角 (2015全國(guó)卷Ⅰ)如圖,四邊形ABCD為菱形,∠ABC=120,E,F(xiàn)是平面ABCD同一側(cè)的兩點(diǎn),BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (1)證明:平面AEC⊥平面AFC; (2)求直線AE與直線CF所成角的余弦值. [破題思路] 第(1)問(wèn) 求什么 想什么 證明平面AEC⊥平面AFC,想到求二面角EACF的平面角為直角或證明平面AEC的法向量與平面AFC的法向量垂直 給什么 用什么 四邊形ABCD為菱形,則連接BD,使BD∩AC=O,有AC⊥BD,且OA=OC,OB=O D. 由EB⊥平面ABC,F(xiàn)D⊥平面ABC,AB=BC=CD=AD,可證EA=EC,F(xiàn)A=FC,即△EAC和△FAC均為等腰三角形 差什么 找什么 要證二面角的平面角為直角,需找出二面角的平面角,連接EO,F(xiàn)O可知∠EOF即為二面角的平面角;若利用坐標(biāo)系求解,此時(shí)可以O(shè)為坐標(biāo)原點(diǎn),以O(shè)B和OC分別為x軸,y軸建系 第(2)問(wèn) 求什么 想什么 求直線AE與直線CF所成角的余弦值,想到求與的夾角的余弦值 給什么 用什么 由BD與AC垂直平分,且BE⊥平面ABCD,可以O(shè)B與OC分別為x軸,y軸建立空間直角坐標(biāo)系 差什么 找什么 差各線段的具體長(zhǎng)度,故可令OB=1,進(jìn)而求出各點(diǎn)坐標(biāo),和的坐標(biāo) [規(guī)范解答] (1)證明:連接BD,設(shè)BD∩AC于點(diǎn)O,連接EO,F(xiàn)O,EF.在菱形ABCD中,不妨設(shè)OB=1. 由∠ABC=120,可得AO=OC=. 由BE⊥平面ABCD,AB=BC, 可知AE=EC,故EO⊥AC. 由DF⊥平面ABCD,AD=DC, 可知AF=FC,故FO⊥AC. 所以二面角EACF的平面角為∠EOF. 又AE⊥EC,所以EO=. 在Rt△EBO中,可得BE=,故DF=. 在Rt△FDO中,可得FO=. 在直角梯形BDFE中,由BD=2,BE=,DF=, 可得EF=. 從而EO2+FO2=EF2,所以EO⊥FO. 所以二面角EACF為直角, 所以平面AEC⊥平面AFC. (2)以O(shè)為坐標(biāo)原點(diǎn),分別以,的方向?yàn)閤軸,y軸正方向,||為單位長(zhǎng)度,建立空間直角坐標(biāo)系Oxyz. 由(1)可得A(0,-,0),E(1,0,),F(xiàn),C(0,,0), 所以=(1,,),=. 故cos〈,〉==-. 所以直線AE與直線CF所成角的余弦值為. [題后悟通] 思路 受阻 分析 解決第(1)問(wèn)時(shí),不能正確作出二面角的平面角或雖然作出,但不能正確求解而造成問(wèn)題無(wú)法求解或求解錯(cuò)誤,解決第(2)問(wèn)時(shí),不能建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,是造成不能解決問(wèn)題的常見障礙 技法 關(guān)鍵 點(diǎn)撥 求異面直線所成的角θ,可以通過(guò)求兩直線的方向向量的夾角φ求得,即cos θ=|cos φ|.要注意θ的范圍為 [對(duì)點(diǎn)訓(xùn)練] 1.將邊長(zhǎng)為1的正方形AA1O1O(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,如圖,長(zhǎng)為,長(zhǎng)為,其中B1與C在平面AA1O1O的同側(cè). (1)求三棱錐CO1A1B1的體積; (2)求異面直線B1C與AA1所成的角的大?。? 解:(1)∵=,∴∠A1O1B1=, ∴S△O1A1B1=O1A1O1B1sin=, ∴VCO1A1B1=OO1S△O1A1B1=1=, ∴三棱錐CO1A1B1的體積為. (2)以O(shè)為坐標(biāo)原點(diǎn),OA,OO1所在直線為y軸,z軸建立如圖所示的平面直角坐標(biāo)系,則A(0,1,0),A1(0,1,1),B1, C. ∴=(0,0,1), =(0,-1,-1), ∴cos〈,〉==-, ∴〈,〉=, ∴異面直線B1C與AA1所成的角為. 題型策略(二)求直線與平面所成的角 (2018合肥質(zhì)檢)如圖,在多面體ABCDEF中,四邊形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M為棱AE的中點(diǎn). (1)求證:平面BDM∥平面EFC; (2)若DE=2AB,求直線AE與平面BDM所成角的正弦值. [破題思路] 第(1)問(wèn) 求什么想什么 求證平面BDM∥平面EFC,想到證明平面BDM內(nèi)的兩條相交直線與平面EFC平行 給什么用什么 由BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,利用線面垂直的性質(zhì)及平行四邊形的性質(zhì)可知四邊形BDEF為平行四邊形,即EF∥BD 差什么找什么 還需在平面BDM中找一條直線與平面CEF平行,由M為棱AE的中點(diǎn),想到構(gòu)造三角形的中位線,連接AC與BD相交即可 第(2)問(wèn) 求什么想什么 求直線AE與平面BDM所成角的正弦值,想到求直線AE的方向向量與平面BDM的法向量所成角的余弦的絕對(duì)值 給什么用什么 題干中有DE⊥平面ABCD,四邊形ABCD為正方形,從而有DE,DA,DC兩兩互相垂直,利用此性質(zhì)建立空間直角坐標(biāo)系 差什么找什么 要求點(diǎn)的坐標(biāo),需要線段的長(zhǎng)度,通過(guò)DE=2AB賦值即可解決 [規(guī)范解答] (1)證明:連接AC交BD于點(diǎn)N, 則N為AC的中點(diǎn),連接MN, 又M為AE的中點(diǎn),∴MN∥EC. ∵M(jìn)N?平面EFC,EC?平面EFC, ∴MN∥平面EFC. ∵BF,DE都垂直底面ABCD,∴BF∥DE. ∵BF=DE, ∴四邊形BDEF為平行四邊形,∴BD∥EF. ∵BD?平面EFC,EF?平面EFC, ∴BD∥平面EFC. 又MN∩BD=N, ∴平面BDM∥平面EFC. (2)∵DE⊥平面ABCD,四邊形ABCD是正方形, ∴DA,DC,DE兩兩垂直,以D為坐標(biāo)原點(diǎn),DA,DC,DE所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系Dxyz. 設(shè)AB=2,則DE=4,從而D(0,0,0),B(2,2,0),A(2,0,0),E(0,0,4),M(1,0,2), ∴=(2,2,0), =(1,0,2), 設(shè)平面BDM的法向量為n=(x,y,z), 則即 令x=2,則y=-2,z=-1, 從而n=(2,-2,-1)為平面BDM的一個(gè)法向量. ∵=(-2,0,4), 設(shè)直線AE與平面BDM所成的角為θ, 則sin θ=|cos〈n〉|==, ∴直線AE與平面BDM所成角的正弦值為. [題后悟通] 思路 受阻 分析 解決第(1)問(wèn)不能正確利用M為中點(diǎn)這一條件構(gòu)造中位線導(dǎo)致問(wèn)題不易求解;第(2)忽視條件DE=2AB,不能正確賦值,造成不能繼續(xù)求解或求解錯(cuò)誤 技法 關(guān)鍵 點(diǎn)撥 用向量法求解直線l與平面α所成的角的一般思路為:設(shè)直線l的方向向量為a,平面α的法向量為n,則直線l與平面α所成的角θ滿足sin θ=|cos〈a,n〉| [對(duì)點(diǎn)訓(xùn)練] 2.(2018全國(guó)卷Ⅰ)如圖,四邊形ABCD為正方形,E,F(xiàn)分別為AD,BC的中點(diǎn),以DF為折痕把△DFC折起,使點(diǎn)C到達(dá)點(diǎn)P的位置,且PF⊥BF. (1)證明:平面PEF⊥平面ABFD; (2)求DP與平面ABFD所成角的正弦值. 解:(1)證明:由已知可得BF⊥PF,BF⊥EF, 又PF∩EF=F, 所以BF⊥平面PEF. 又BF?平面ABFD, 所以平面PEF⊥平面ABFD. (2)如圖,作PH⊥EF,垂足為H. 由(1)得,PH⊥平面ABFD. 以H為坐標(biāo)原點(diǎn), 的方向?yàn)閥軸正方向,||為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系Hxyz. 由(1)可得,DE⊥PE. 又因?yàn)镈P=2,DE=1, 所以PE=. 又PF=1,EF=2, 所以PE⊥PF. 所以PH=,EH=. 則H(0,0,0),P,D, =,=. 又為平面ABFD的法向量, 設(shè)DP與平面ABFD所成角為θ, 則sin θ===. 所以DP與平面ABFD所成角的正弦值為. 題型策略(三)求平面與平面所成角 (2018沈陽(yáng)質(zhì)監(jiān))如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,底面ABCD是正方形,且PA=PD,∠APD=90. (1)證明:平面PAB⊥平面PCD; (2)求二面角APBC的余弦值. [破題思路] 第(1)問(wèn) 求什么想什么 證明平面PAB⊥平面PCD,想到證明其中一個(gè)平面內(nèi)的某條直線垂直于另一個(gè)平面 給什么用什么 給出平面PAD⊥平面ABCD,底面ABCD為正方形,用面面垂直的性質(zhì)定理可知CD⊥平面APD,則CD⊥AP,然后結(jié)合∠APD=90,即PD⊥AP,利用面面垂直的判定定理即可證明 第(2)問(wèn) 求什么想什么 求二面角APBC的余弦值,想到求平面APB和平面BCP的法向量的夾角的余弦值 給什么用什么 由題目條件底面ABCD為正方形,可以根據(jù)正方形的性質(zhì)確定x軸,y軸建系 差什么找什么 要建立空間直角坐標(biāo)系,還缺少z軸.由平面PAD⊥平面ABCD,可在平面PAD內(nèi)過(guò)點(diǎn)P作AD的垂線即可 [規(guī)范解答] (1)證明:∵底面ABCD為正方形, ∴CD⊥AD. 又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴CD⊥平面PA D. 又AP?平面PAD,∴CD⊥AP. ∵∠APD=90,即PD⊥AP, 又CD∩PD=D,∴AP⊥平面PC D. ∵AP?平面PAB,∴平面PAB⊥平面PC D. (2)取AD的中點(diǎn)為O,BC的中點(diǎn)為Q,連接PO,OQ,易得PO⊥底面ABCD,OQ⊥AD,以O(shè)為原點(diǎn),,,的方向分別為x軸,y軸,z軸的正方向建立如圖所示的空間直角坐標(biāo)系,不妨設(shè)正方形ABCD的邊長(zhǎng)為2, 可得A(1,0,0),B(1,2,0),C(-1,2,0),P(0,0,1). 設(shè)平面APB的法向量為n1=(x1,y1,z1), 而=(1,0,-1),=(1,2,-1), 則即 取x1=1,得n1=(1,0,1)為平面APB的一個(gè)法向量. 設(shè)平面BCP的法向量為n2=(x2,y2,z2), 而=(1,2,-1),=(-1,2,-1), 則即 取y2=1,得n2=(0,1,2)為平面BCP的一個(gè)法向量. ∴cos〈n1,n2〉==, 由圖知二面角APBC為鈍角, 故二面角APBC的余弦值為-. [題后悟通] 思路 受阻 分析 本題第(1)問(wèn)因不能正確利用面面垂直的性質(zhì),而得不出CD⊥平面PAD,從而導(dǎo)致無(wú)法證明面面垂直;第(2)問(wèn)不能正確利用面面垂直的性質(zhì)找出z軸而無(wú)法正確建立空間直角坐標(biāo)系而導(dǎo)致不能正確求解 技法 關(guān)鍵 點(diǎn)撥 求二面角αlβ的平面角的余弦值,即求平面α的法向量n1與平面β的法向量n2的夾角的余弦cos〈n1,n2〉,但要注意判斷二面角是銳角還是鈍角 [對(duì)點(diǎn)訓(xùn)練] 3. (2019屆高三昆明調(diào)研)如圖,在四棱錐PABCD中,底面ABCD是直角梯形,∠ADC=90,AB∥CD,AB=2CD.平面PAD⊥平面ABCD,PA=PD,點(diǎn)E在PC上,DE⊥平面PAC. (1)證明:PA⊥平面PCD; (2)設(shè)AD=2,若平面PBC與平面PAD所成的二面角為45,求DE的長(zhǎng). 解:(1)證明:由DE⊥平面PAC,得DE⊥PA. 又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,所以CD⊥平面PAD,所以CD⊥PA. 又CD∩DE=D,所以PA⊥平面PC D. (2)取AD的中點(diǎn)O,連接PO, 因?yàn)镻A=PD,所以PO⊥AD,則PO⊥平面ABCD, 以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系Oxyz, 由(1)得PA⊥PD,由AD=2得PA=PD=,OP=1, 設(shè)CD=a,則P(0,0,1),D(0,1,0),C(a,1,0),B(2a,-1,0),則=(-a,2,0),=(a,1,-1), 設(shè)m=(x,y,z)為平面PBC的法向量, 則即令x=2,則y=a,z=3a,故m=(2,a,3a)為平面PBC的一個(gè)法向量, 由(1)知n==(a,0,0)為平面PAD的一個(gè)法向量, 由|cos〈m,n〉|===, 解得a=,即CD=, 所以在Rt△PCD中,PC=, 由等面積法可得DE==. [考法三 利用空間向量求解探索性問(wèn)題] (2018山東濰坊三模)如圖,在四棱錐EABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90,BE=BC,F(xiàn)為CE的中點(diǎn). (1)求證:平面BDF⊥平面ACE; (2)若2AE=EB,在線段AE上是否存在一點(diǎn)P,使得二面角PDBF的余弦值的絕對(duì)值為.請(qǐng)說(shuō)明理由. [破題思路] 第(1)問(wèn) 求什么想什么 求證平面BDF⊥平面ACE,想到證明其中一個(gè)平面內(nèi)的直線垂直于另一個(gè)平面 給什么用什么 由平面ABCD⊥平面ABE,∠AEB=90可利用面面垂直性質(zhì)及線面垂直的判定及性質(zhì)得到AE⊥BF;再由BE=BC,F(xiàn)為CE的中點(diǎn),可利用等腰三角形中線、高線合一可得到BF⊥CE;進(jìn)而再由線面垂直的判定、面面垂直的判定得證 第(2)問(wèn) 求什么想什么 在線段AE上是否存在一點(diǎn)P,使得二面角PDBF的余弦值的絕對(duì)值為.想到假設(shè)點(diǎn)P存在,建立空間直角坐標(biāo)系,設(shè)出點(diǎn)P坐標(biāo),求二面角的余弦值即可 給什么用什么 2AE=EB,題目已知條件及(1)的結(jié)論,可建系設(shè)點(diǎn)表示出兩平面的法向量,進(jìn)而由兩法向量夾角公式得出關(guān)于點(diǎn)P坐標(biāo)的方程,求解即可 [規(guī)范解答] (1)證明:因?yàn)槠矫鍭BCD⊥平面ABE,BC⊥AB,平面ABCD∩平面ABE=AB, 所以BC⊥平面ABE, 又AE?平面ABE,所以BC⊥AE. 因?yàn)锳E⊥BE,BC∩BE=B, 所以AE⊥平面BCE,因?yàn)锽F?平面BCE, 所以AE⊥BF, 在△BCE中,因?yàn)锽E=BC,F(xiàn)為CE的中點(diǎn), 所以BF⊥CE,又AE∩CE=E, 所以BF⊥平面ACE, 又BF?平面BDF,所以平面BDF⊥平面ACE. (2)存在.如圖,建立空間直角坐標(biāo)系Exyz,設(shè)AE=1,則E(0,0,0),B(2,0,0),D(0,1,2),C(2,0,2),F(xiàn)(1,0,1), =(-2,1,2),=(-1,0,1),設(shè)P(0,a,0),a∈[0,1],則=(2,-a,0), 結(jié)合(1)易知EC⊥平面BDF, 故=(2,0,2)為平面BDF的一個(gè)法向量, 設(shè)n=(x,y,z)為平面BDP的法向量, 則即 令x=a,可得平面BDP的一個(gè)法向量為n=(a,2,a-1), 所以cos〈,n〉==, 由|cos〈,n〉|=,解得a=0或a=1. 故在線段AE上存在點(diǎn)P,使得二面角PDBF的余弦值的絕對(duì)值為,且此時(shí)點(diǎn)P在E處或A處. [題后悟通] 思路 受阻 分析 解決第(1)問(wèn)時(shí),不會(huì)證明AE⊥BF,造成無(wú)法繼續(xù)往下證明結(jié)論成立;解決第(2)問(wèn)時(shí),不能正確建立空間直角坐標(biāo)系表示相關(guān)向量坐標(biāo),是造成不能解決問(wèn)題的常見誤區(qū) 技法 關(guān)鍵 點(diǎn)撥 利用空間向量求解探索性問(wèn)題的策略 (1)假設(shè)題中的數(shù)學(xué)對(duì)象存在(或結(jié)論成立)或暫且認(rèn)可其中的一部分結(jié)論. (2)在這個(gè)前提下進(jìn)行邏輯推理,把要成立的結(jié)論當(dāng)作條件,據(jù)此列方程或方程組,把“是否存在”問(wèn)題轉(zhuǎn)化為“點(diǎn)的坐標(biāo)(或參數(shù))是否有解,是否有規(guī)定范圍內(nèi)的解”等.若由此推導(dǎo)出矛盾,則否定假設(shè);否則,給出肯定結(jié)論 [對(duì)點(diǎn)訓(xùn)練] 如圖,在多面體ABCDEF中,四邊形ABCD是正方形,EF∥AB,DE=EF=1,DC=BF=2,∠EAD=30. (1)求證:AE⊥平面CDEF; (2)在線段BD上確定一點(diǎn)G,使得平面EAD與平面FAG所成的角為30. 解:(1)證明:因?yàn)樗倪呅蜛BCD是正方形, 所以AD=CD=2. 在△ADE中,由正弦定理得, =, 即=, 解得sin∠AED=1, 所以∠AED=90,即AE⊥ED. 在梯形ABFE中,過(guò)點(diǎn)E作EP∥BF交AB于點(diǎn)P, 因?yàn)镋F∥AB, 所以EP=BF=2,PB=EF=1,AP=1. 在Rt△ADE中,AE=, 所以AE2+AP2=EP2, 所以AE⊥AB, 所以AE⊥EF, 又EF∩DE=E, 所以AE⊥平面CDEF. (2)由(1)可得,AE⊥EF, 又AD⊥DC,DC∥EF,AD∩AE=A, 所以DC⊥平面AED, 又DC?平面ABCD, 所以平面AED⊥平面ABCD. 以D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,其中z軸為在平面AED內(nèi)過(guò)點(diǎn)D作AD的垂線所在的直線, 則B(2,2,0),A(2,0,0),E,F(xiàn), 所以=(2,2,0),=. 設(shè)=λ=(2λ,2λ,0)(0≤λ≤1), 則=(2λ-2,2λ,0), 設(shè)平面FAG的法向量為n1=(x1,y1,z1), 則即 取x1=-λ,可得平面FAG的一個(gè)法向量為n1=(-λ,λ-,2-5λ), 易知平面EAD的一個(gè)法向量為n2=(0,1,0), 所以cos 30= ==, 化簡(jiǎn)可得9λ2-6λ+1=0,解得λ=, 故當(dāng)點(diǎn)G滿足=時(shí),平面EAD與平面FAG所成的角為30. [高考大題通法點(diǎn)撥] 立體幾何問(wèn)題重在“建”——建模、建系 [思維流程] [策略指導(dǎo)] 立體幾何解答題的基本模式是論證推理與計(jì)算相結(jié)合,以某個(gè)幾何體為依托,分步設(shè)問(wèn),逐層加深.解決這類題目的原則是建模、建系. 建?!獙?wèn)題轉(zhuǎn)化為平行模型、垂直模型、平面化模型及角度、距離等的計(jì)算模型. 建系——依托于題中的垂直條件,建立空間直角坐標(biāo)系,利用空間向量求解. 如圖,四邊形ABCD是矩形,AB=1,AD=,E是AD的中點(diǎn),BE與AC交于點(diǎn)F,GF⊥平面ABC D. (1)求證:AF⊥平面BEG; (2)若AF=FG,求直線EG與平面ABG所成角的正弦值. [破題思路] 第(1)問(wèn) 求什么想什么 求證AF⊥平面BEG,想到證明AF與平面BEG內(nèi)的兩條相交直線垂直 給什么用什么 題目中給出GF⊥平面ABCD,利用線面垂直的性質(zhì)可證AF⊥GF 差什么找什么 還差A(yù)F與平面BEG中的另一條與GF相交的直線垂直.在矩形ABCD中,根據(jù)已知數(shù)據(jù)可證明∠AFB=90 第(2)問(wèn) 求什么想什么 求直線EG與平面ABG所成角的正弦值,想到建立空間直角坐標(biāo)系,利用空間向量求解與平面ABG的一個(gè)法向量的余弦值 給什么用什么 題目中給出GF⊥平面ABCD,可用GF為z軸,由(1)問(wèn)可知GF,AF,EF兩兩互相垂直,故可建立空間直角坐標(biāo)系 差什么找什么 還缺少點(diǎn)的坐標(biāo),根據(jù)AF=FG,以及題目條件可求出相關(guān)點(diǎn)的坐標(biāo) [規(guī)范解答] (1)證明:因?yàn)樗倪呅蜛BCD為矩形, 所以△AEF∽△CBF, 所以===. 又在矩形ABCD中,AB=1,AD=, 所以AE=,AC=. 在Rt△BEA中,BE==, 所以AF=AC=,BF=BE=. 在△ABF中,AF2+BF2=2+2=1=AB2, 所以∠AFB=90, 即AF⊥BE. 因?yàn)镚F⊥平面ABCD, AF?平面ABCD, 所以AF⊥GF. 又BE∩GF=F,BE?平面BEG,GF?平面BEG, 所以AF⊥平面BEG. (2)由(1)得AC,BE,F(xiàn)G兩兩垂直,以點(diǎn)F為原點(diǎn),F(xiàn)A,F(xiàn)E,F(xiàn)G所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系, 則A,B,G, E,=, =,=. 設(shè)n=(x,y,z)是平面ABG的法向量, 則即取x=, 得n=(,-1,)是平面ABG的一個(gè)法向量. 設(shè)直線EG與平面ABG所成角的大小為θ, 則sin θ= ==, 所以直線EG與平面ABG所成角的正弦值為. [關(guān)鍵點(diǎn)撥] 利用法向量求解空間角的關(guān)鍵在于“四破” [對(duì)點(diǎn)訓(xùn)練] (2018全國(guó)卷Ⅱ)如圖,在三棱錐PABC中,AB=BC=2,PA=PB=PC=AC=4,O為AC的中點(diǎn). (1)證明:PO⊥平面ABC; (2)若點(diǎn)M在棱BC上,且二面角MPAC為30,求PC與平面PAM所成角的正弦值. 解:(1)證明:因?yàn)镻A=PC=AC=4,O為AC的中點(diǎn), 所以PO⊥AC,且PO=2. 連接OB,因?yàn)锳B=BC=AC, 所以△ABC為等腰直角三角形, 且OB⊥AC,OB=AC=2. 所以PO2+OB2=PB2,所以PO⊥O B. 又因?yàn)镺B∩AC=O, 所以PO⊥平面ABC. (2)以O(shè)為坐標(biāo)原點(diǎn),的方向?yàn)閤軸正方向,建立如圖所示的空間直角坐標(biāo)系Oxyz.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2), =(0,2,2). 取平面PAC的一個(gè)法向量=(2,0,0). 設(shè)M(a,2-a,0)(0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 通用版2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十 立體幾何中的向量方法講義 理重點(diǎn)生,含解析 通用版 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 第一 部分 專題 立體幾何 中的 向量 方法 講義 重點(diǎn)
鏈接地址:http://www.hcyjhs8.com/p-5412276.html