2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 三角函數(shù)、平面向量 第三講 平面向量學(xué)案 理.doc
《2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 三角函數(shù)、平面向量 第三講 平面向量學(xué)案 理.doc》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 三角函數(shù)、平面向量 第三講 平面向量學(xué)案 理.doc(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第三講 平面向量 考點一 平面向量的概念及線性運算 1.在平面向量的化簡或運算中,要根據(jù)平面向量基本定理選好基底,變形要有方向不能盲目轉(zhuǎn)化. 2.在用三角形加法法則時要保證“首尾相接”,結(jié)果向量是第一個向量的起點指向最后一個向量的終點所在的向量;在用三角形減法法則時要保證“同起點”,結(jié)果向量的方向是指向被減向量. [對點訓(xùn)練] 1.(2018全國卷Ⅰ)在△ABC中,AD為BC邊上的中線,E為AD的中點,則=( ) A.- B.- C.+ D.+ [解析] ∵E是AD的中點,∴=-,∴=+=-+,又∵D為BC的中點,∴=(+),因此=-(+)+=-,故選A. [答案] A 2.(2018河北三市聯(lián)考)已知e1,e2是不共線向量,a=me1+2e2,b=ne1-e2,且mn≠0,若a∥b,則等于( ) A.- B. C.-2 D.2 [解析] ∵a∥b,∴a=λb,即me1+2e2=λ(ne1-e2),則故=-2. [答案] C 3.(2018河南鄭州質(zhì)檢)已知P為△ABC所在平面內(nèi)一點,D為AB的中點,若2+=(λ+1)+,且△PBA與△PBC的面積相等,則實數(shù)λ的值為________. [解析] ∵D為AB的中點,∴2=+, 又∵2+=(λ+1)+. ∴++=(λ+1)+ ∴=λ,又△PBA與△PBC的面積相等, ∴P為AC的中點,∴λ=-1. [答案] -1 4.(2018鹽城一模)在△ABC中,∠A=60,∠A的平分線交BC于點D,若AB=4,且=+λ(λ∈R),則AD的長為________. [解析] 因為B,D,C三點共線,所以+λ=1,解得λ=,如圖,過點D分別作AC,AB的平行線交AB,AC于點M,N,則=,=,經(jīng)計算得AN=AM=3,AD=3. [答案] 3 [快速審題] (1)看到向量的線性運算,想到三角形和平行四邊形法則. (2)看到向量平行,想到向量平行的條件. 平面向量線性運算的2種技巧 (1)對于平面向量的線性運算問題,要盡可能轉(zhuǎn)化到三角形或平行四邊形中,靈活運用三角形法則、平行四邊形法則,緊密結(jié)合圖形的幾何性質(zhì)進行運算. (2)在證明兩向量平行時,若已知兩向量的坐標形式,常利用坐標運算來判斷;若兩向量不是以坐標形式呈現(xiàn)的,常利用共線向量定理(當b≠0時,a∥b?存在唯一實數(shù)λ,使得a=λb)來判斷. 考點二 平面向量的數(shù)量積 1.平面向量的數(shù)量積有兩種運算形式 (1)數(shù)量積的定義:ab=|a||b|cosθ(其中θ為向量a,b的夾角). (2)坐標運算:a=(x1,y1),b=(x2,y2)時,ab=x1x2+y1y2. 2.投影 向量a在向量b方向上的投影為=|a|cosθ(θ為向量a,b的夾角). [對點訓(xùn)練] 1.已知|a|=1,b=(-1,1)且a⊥(a+b),則向量a與向量b的夾角為( ) A. B. C. D. [解析] 設(shè)向量a與向量b的夾角為θ,因為a⊥(a+b),所以a(a+b)=0,即|a|2+ab=1+|a||b|cosθ=1+cosθ=0,cosθ=-,θ=,故選D. [答案] D 2.(2018陜西西安八校聯(lián)考)已知點A(-1,1),B(1,2),C(-2,-1),D(3,4),則向量在方向上的投影是( ) A.-3 B.- C.3 D. [解析] 依題意得,=(-2,-1),=(5,5),=(-2,-1)(5,5)=-15,||=,因此向量在方向上的投影是==-3,選A. [答案] A 3.已知向量a=(-1,2),b=(3,-6),若向量c滿足c與b的夾角為120,c(4a+b)=5,則|c|=( ) A.1 B. C.2 D.2 [解析] 依題意可得|a|=,|b|=3,a∥b.由c(4a+b)=5,可得4ac+bc=5.由c與b的夾角為120, 可得c與a的夾角為60,則有bc=|b||c|cos120=|c|3=-|c|,ac=|a||c|cos60=|c|=|c|,所以4|c|-|c|=5,解得|c|=2,故選D. [答案] D 4.如圖所示,在梯形ABCD中,AB∥CD,CD=2,∠BAD=,若=2,則=________. [解析] 因為=2,所以-=,所以=. 因為AB∥CD,CD=2,∠BAD=,所以2||=||||cos,化簡得||=2. 故=(+)=||2+= (2)2+22cos=12. [答案] 12 [快速審題] (1)看到向量垂直,想到其數(shù)量積為零. (2)看到向量的模與夾角,想到向量數(shù)量積的有關(guān)性質(zhì)和公式. 平面向量數(shù)量積的兩種運算方法 (1)依據(jù)模和夾角計算,要注意確定這兩個向量的夾角,如夾角不易求或者不可求,可通過選擇易求夾角和模的基底進行轉(zhuǎn)化. (2)利用坐標來計算,向量的平行和垂直都可以轉(zhuǎn)化為坐標滿足的等式,從而應(yīng)用方程思想解決問題,化形為數(shù),使向量問題數(shù)量化. 考點三 平面向量在幾何中的應(yīng)用 用向量法解決平面(解析)幾何問題的兩種方法 (1)基向量法:選取適當?shù)幕?基底中的向量盡量已知模或夾角),將題中涉及的向量用基底表示,利用向量的運算法則、運算律或性質(zhì)計算; (2)坐標法:建立平面直角坐標系,實現(xiàn)向量的坐標化,將幾何問題中的長度、垂直、平行等問題轉(zhuǎn)化為代數(shù)運算. 一般地,存在坐標系或易建坐標系的題目適合用坐標法. [解析] (1)解法一:∵⊥,||=||=1, ∴|+|==. 設(shè)(+)與的夾角為θ,則(-)(-)=2-(+)+=1-cosθ,又∵θ∈[0,π],∴cosθ∈[-1,1],∴(-)(-)=1-cosθ∈[1-,1+], ∴(-)(-)的最大值為+1,故選A. 解法二:以O(shè)為原點,OA所在直線為x軸,OB所在直線為y軸建立平面直角坐標系(取的方向為x軸正方向,的方向為y軸正方向),則A(1,0),B(0,1).設(shè)C(cosθ,sinθ)(θ∈[0,2π)),∴-=(cosθ-1,sinθ),-=(cosθ,sinθ-1),∴(-)(-)=cosθ(cosθ-1)+sinθ(sinθ-1)=cos2θ+sin2θ-(sinθ+cosθ)=1-sin,∵θ∈[0,2π),∴sin∈[-1,1],∴(-)(-)的最大值為+1,故選A. (2)解法一:因為2=, 所以E為BC中點.設(shè)正方形的邊長為2,則||=, ||=2,=(-)=||2-||2+=22-22=-2, 所以cosθ===-. 解法二:因為2=, 所以E為BC中點. 設(shè)正方形的邊長為2,建立如圖所示的平面直角坐標系xAy,則點A(0,0),B(2,0),D(0,2),E(2,1), 所以=(2,1),=(-2,2),所以=2(-2)+12=-2, 故cosθ===-. [答案] (1)A (2)- 解決以平面圖形為載體的向量數(shù)量積問題的策略 (1)選擇平面圖形中的模與夾角確定的向量作為一組基底,用該基底表示構(gòu)成數(shù)量積的兩個向量,結(jié)合向量數(shù)量積運算律求解. (2)若已知圖形中有明顯的適合建立直角坐標系的條件,可建立直角坐標系將向量數(shù)量積運算轉(zhuǎn)化為代數(shù)運算來解決. [對點訓(xùn)練] 1.在△ABC中,點M是BC邊的中點,AM=1,點P在AM上且滿足=2,則(+)等于( ) A. B. C.- D.- [解析] 由點M為BC邊的中點,得+=2=. ∴(+)=2. 又∵=2,∴||=||=. ∴2=||2=.故選A. [答案] A 2.(2017全國卷Ⅱ)已知△ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點,則(+)的最小值是( ) A.-2 B.- C.- D.-1 [解析] 解法一:設(shè)BC的中點為D,AD的中點為E,則有+=2, 則(+)=2 =2(+)(-)=2(2-2).而2=2=,當P與E重合時,2有最小值0,故此時(+)取最小值, 最小值為-22=-2=-. 解法二:以AB所在直線為x軸,AB的中點為原點建立平面直角坐標系,如圖, 則A(-1,0),B(1,0),C(0,),設(shè)P(x,y),取BC的中點D,則D.(+)=2=2(-1-x,-y)=2=2. 因此,當x=-,y=時,(+)取得最小值,為2=-,故選B. [答案] B 1.(2018全國卷Ⅱ)已知向量a,b滿足|a|=1,ab=-1,則a(2a-b)=( ) A.4 B.3 C.2 D.0 [解析] 因為|a|=1,ab=-1,所以a(2a-b)=2|a|2-ab=212-(-1)=3.故選B. [答案] B 2.(2017全國卷Ⅲ)在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若=λ+μ,則λ+μ的最大值為( ) A.3 B.2 C. D.2 [解析] 分別以CB、CD所在的直線為x軸、y軸建立直角坐標系,則A(2,1),B(2,0),D(0,1). ∵點P在以C為圓心且與BD相切的圓上, ∴可設(shè)P. 則=(0,-1),=(-2,0), =. 又=λ+μ, ∴λ=-sinθ+1,μ=-cosθ+1, ∴λ+μ=2-sinθ-cosθ=2-sin(θ+φ), 其中tanφ=,∴(λ+μ)max=3. [答案] A 3.(2018全國卷Ⅲ)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),則λ=________. [解析] 由已知得2a+b=(4,2).又c=(1,λ),c∥(2a+b),所以4λ-2=0,解得λ=. [答案] 4.(2018上海卷)在平面直角坐標系中,已知點A(-1,0)、B(2,0),E、F是y軸上的兩個動點,且||=2,則的最小值為________. [解析] 設(shè)E(0,m),F(xiàn)(0,n), 又A(-1,0),B(2,0), ∴=(1,m),=(-2,n). ∴=-2+mn, 又知||=2,∴|m-n|=2. ①當m=n+2時,=mn-2=(n+2)n-2=n2+2n-2=(n+1)2-3. ∴當n=-1,即E的坐標為(0,1),F(xiàn)的坐標為(0,-1)時,取得最小值-3. ②當m=n-2時,=mn-2=(n-2)n-2=n2-2n-2=(n-1)2-3. ∴當n=1,即E的坐標為(0,-1),F(xiàn)的坐標為(0,1)時,取得最小值-3. 綜上可知,的最小值為-3. [答案] -3 5.(2017天津卷)在△ABC中,∠A=60,AB=3,AC=2.若=2,=λ-(λ∈R),且=-4,則λ的值為________. [解析] 解法一:如圖,由=2得=+, 所以=(λ-)=λ-2+λ2-, 又=32cos60=3,2=9,2=4,所以=λ-3+λ-2=λ-5=-4,解得λ=. 解法二:以A為原點,AB所在的直線為x軸建立平面直角坐標系,如圖,因為AB=3,AC=2,∠A=60,所以B(3,0),C(1,),又=2,所以D, 所以=,而=λ-=λ(1,)-(3,0)=(λ-3,λ),因此=(λ-3)+λ =λ-5=-4,解得λ=. [答案] 1.平面向量是高考必考內(nèi)容,每年每卷均有一個小題(選擇題或填空題),一般出現(xiàn)在第3~7或第13~15題的位置上,難度較低.主要考查平面向量的模、數(shù)量積的運算、線性運算等,數(shù)量積是其考查的熱點. 2.有時也會以平面向量為載體,與三角函數(shù)、解析幾何等其他知識相交匯綜合命題,難度中等. 熱點課題9 坐標法在平面向量中的運用 [感悟體驗] 1.(2018湖南長郡中學(xué)一模)若等邊三角形ABC的邊長為3,平面內(nèi)一點M滿足=+,則的值為( ) A.2 B.- C. D.-2 [解析] 如圖所示,點A,點B,點C, ∴=,=(3,0). ∴=+=+(3,0)=, ∴=+=,∴=-=,=-=,∴=-1+=2.故選A. [答案] A 2.(2018河南開封質(zhì)檢)已知△ABC為等邊三角形,AB=2,設(shè)點P,Q滿足=λ,=(1-λ),λ∈R.若 =-,則λ的值為________. [解析] 如圖,以點A為坐標原點,AB所在的直線為x軸,過點A且垂直于AB的直線為y軸,建立平面直角坐標系.設(shè)A(0,0),B(2,0),C(1,),則=(2,0),=(1,),∴P(2λ,0),Q(1-λ,(1-λ)). ∵=-,∴(-1-λ,(1-λ))(2λ-1,-)=-,化簡得4λ2-4λ+1=0, ∴λ=. [答案] 專題跟蹤訓(xùn)練(十六) 一、選擇題 1.(2018昆明模擬)在△ABC中,點D,E分別在邊BC,AC上,且=2,=3,若=a,=b,則=( ) A.a+b B.a-b C.-a-b D.-a+b [解析] =+ =+ =(-)- =--=-a-b,故選C. [答案] C 2.(2018吉林白城模擬)已知向量a=(2,3),b=(-1,2),若ma+nb與a-2b共線,則=( ) A. B.2 C.- D.-2 [解析] 由向量a=(2,3),b=(-1,2),得ma+nb=(2m-n,3m+2n),a-2b=(4,-1).由ma+nb與a-2b共線,得=,所以=-,故選C. [答案] C 3.已知兩個非零向量a與b的夾角為θ,則“ab>0”是“θ為銳角”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 [解析] 由ab>0,可得到θ∈,不能得到θ∈;而由θ∈,可以得到ab>0.故選B. [答案] B 4.(2018鄭州一中高三測試)已知向量a,b均為單位向量,若它們的夾角為60,則|a+3b|等于( ) A. B. C. D.4 [解析] 依題意得ab=,|a+3b|==,故選C. [答案] C 5.已知△ABC是邊長為1的等邊三角形,則(-2)(3+4)=( ) A.- B.- C.-6- D.-6+ [解析] (-2)(3+4)=3-62+4-8=3||||cos120-6||2+4||||cos120-8||||cos120=311-612+411-811=--6-2+4=-,故選B. [答案] B 6.(2018河南中原名校聯(lián)考)如圖所示,矩形ABCD的對角線相交于點O,E為AO的中點,若=λ+μ(λ,μ為實數(shù)),則λ2+μ2=( ) A. B. C.1 D. [解析]?。剑剑剑?+)=-,所以λ=,μ=-,故λ2+μ2=,故選A. [答案] A 7.(2018山西四校聯(lián)考)如圖,在直角梯形ABCD中,AB=2AD=2DC,E為BC邊上一點,=3,F(xiàn)為AE的中點,則=( ) A.- B.- C.-+ D.-+ [解析] 解法一:如圖,取AB的中點G,連接DG、CG,則易知四邊形DCBG為平行四邊形,所以==-=-,∴=+=+=+=+,于是=-=-=-=-+,故選C. 解法二:=+=+ =-+ =-+ =-+++(++) =-+. [答案] C 8.(2018河南鄭州二模)已知平面向量a,b,c滿足|a|=|b|=|c|=1,若ab=,則(a+b)(2b-c)的最小值為( ) A.-2 B.3- C.-1 D.0 [解析] 由|a|=|b|=1,ab=,可得〈a,b〉=,令=a,=b,以的方向為x軸的正方向建立如圖所示的平面直角坐標系,則a==(1,0),b==,設(shè)c==(cosθ,sinθ)(0≤θ<2π),則(a+b)(2b-c)=2ab-ac+2b2-bc=3-=3-sin,則(a+b)(2b-c)的最小值為3-,故選B. [答案] B 9.(2018安徽江南十校聯(lián)考)已知△ABC中,AB=6,AC=3,N是邊BC上的點,且=2,O為△ABC的外心,則的值為( ) A.8 B.10 C.18 D.9 [解析] 由于=2,則=+,取AB的中點為E,連接OE,由于O為△ABC的外心,則⊥,∴==2=62=18,同理可得=2=32=,所以==+=18+=6+3=9,故選D. [答案] D 10.(2018山西太原模擬)已知△DEF的外接圓的圓心為O,半徑R=4,如果++=0,且||=||,則向量在方向上的投影為( ) A.6 B.-6 C.2 D.-2 [解析] 由++=0得,=+. ∴DO經(jīng)過EF的中點,∴DO⊥EF. 連接OF,∵||=||=||=4, ∴△DOF為等邊三角形,∴∠ODF=60.∴∠DFE=30,且EF=4sin602=4. ∴向量在方向上的投影為||cos〈,〉=4cos150=-6,故選B. [答案] B 11.(2018湖北黃岡二模)已知平面向量a,b,c滿足|a|=|b|=1,a⊥(a-2b),(c-2a)(c-b)=0,則|c|的最大值與最小值的和為( ) A.0 B. C. D. [解析] ∵a⊥(a-2b),∴a(a-2b)=0,即a2=2ab,又|a|=|b|=1,∴ab=,a與b的夾角為60. 設(shè)=a,=b,=c,以O(shè)為坐標原點,的方向為x軸正方向建立如圖所示的平面直角坐標系, 則a=,b=(1,0). 設(shè)c=(x,y),則c-2a=(x-1,y-),c-b=(x-1,y). 又∵(c-2a)(c-b)=0,∴(x-1)2+y(y-)=0. 即(x-1)2+2=, ∴點C的軌跡是以點M為圓心,為半徑的圓. 又|c|=表示圓M上的點與原點O(0,0)之間的距離,所以|c|max=|OM|+,|c|min=|OM|-, ∴|c|max+|c|min=2|OM|=2 =,故選D. [答案] D 12.(2018廣東七校聯(lián)考)在等腰直角△ABC中,∠ABC=90,AB=BC=2,M,N為AC邊上的兩個動點(M,N不與A,C重合),且滿足||=,則的取值范圍為( ) A. B. C. D. [解析] 不妨設(shè)點M靠近點A,點N靠近點C,以等腰直角三角形ABC的直角邊所在直線為坐標軸建立平面直角坐標系,如圖所示, 則B(0,0),A(0,2),C(2,0),線段AC的方程為x+y-2=0(0≤x≤2).設(shè)M(a,2-a),N(a+1,1-a)(由題意可知0- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 三角函數(shù)、平面向量 第三講 平面向量學(xué)案 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 三角函數(shù) 平面 向量 三講
鏈接地址:http://www.hcyjhs8.com/p-5452006.html