高考數(shù)學(xué)大一輪復(fù)習(xí) 8.3直線、平面平行的判定與性質(zhì)課件 理 蘇教版.ppt
《高考數(shù)學(xué)大一輪復(fù)習(xí) 8.3直線、平面平行的判定與性質(zhì)課件 理 蘇教版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大一輪復(fù)習(xí) 8.3直線、平面平行的判定與性質(zhì)課件 理 蘇教版.ppt(90頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
8 3直線 平面平行的判定與性質(zhì) 第八章立體幾何 數(shù)學(xué)蘇 理 基礎(chǔ)知識(shí) 自主學(xué)習(xí) 題型分類 深度剖析 思想方法 感悟提高 練出高分 1 直線與平面平行的判定與性質(zhì) a a b a b a a a b a a b 2 面面平行的判定與性質(zhì) a b a b P a b a b 思考辨析 判斷下面結(jié)論是否正確 請(qǐng)?jiān)诶ㄌ?hào)中打 或 1 如果一個(gè)平面內(nèi)的兩條直線平行于另一個(gè)平面 那么這兩個(gè)平面平行 2 如果兩個(gè)平面平行 那么分別在這兩個(gè)平面內(nèi)的兩條直線平行或異面 3 若直線a與平面 內(nèi)無數(shù)條直線平行 則a 4 空間四邊形ABCD中 E F分別是AB AD的中點(diǎn) 則EF 平面BCD 5 若 直線a 則a 或 解析 因?yàn)?a 所以a 在平面 內(nèi)存在無數(shù)條直線與直線a平行 但不是所有直線都與直線a平行 故命題 為真命題 命題 為假命題 在平面 內(nèi)存在無數(shù)條直線與直線a垂直 故命題 為假命題 例1 2014 山東改編 如圖 四棱錐P ABCD中 AD BC AB BC AD E F H分別為線段AD PC CD的中點(diǎn) AC與BE交于O點(diǎn) G是線段OF上一點(diǎn) 1 求證 AP 平面BEF 題型一直線與平面平行的判定與性質(zhì) 解析 思維升華 證明連結(jié)EC 例1 2014 山東改編 如圖 四棱錐P ABCD中 AD BC AB BC AD E F H分別為線段AD PC CD的中點(diǎn) AC與BE交于O點(diǎn) G是線段OF上一點(diǎn) 1 求證 AP 平面BEF 題型一直線與平面平行的判定與性質(zhì) BC綊AE 四邊形ABCE是平行四邊形 O為AC的中點(diǎn) 又 F是PC的中點(diǎn) FO AP 解析 思維升華 解析 思維升華 FO 平面BEF AP 平面BEF AP 平面BEF 例1 2014 山東改編 如圖 四棱錐P ABCD中 AD BC AB BC AD E F H分別為線段AD PC CD的中點(diǎn) AC與BE交于O點(diǎn) G是線段OF上一點(diǎn) 1 求證 AP 平面BEF 題型一直線與平面平行的判定與性質(zhì) 判斷或證明線面平行的常用方法 1 利用線面平行的定義 無公共點(diǎn) 2 利用線面平行的判定定理 a b a b a 3 利用面面平行的性質(zhì)定理 a a 4 利用面面平行的性質(zhì) a a a 例1 2014 山東改編 如圖 四棱錐P ABCD中 AD BC AB BC AD E F H分別為線段AD PC CD的中點(diǎn) AC與BE交于O點(diǎn) G是線段OF上一點(diǎn) 1 求證 AP 平面BEF 題型一直線與平面平行的判定與性質(zhì) 解析 思維升華 思維點(diǎn)撥 解析 思維升華 例1 2 求證 GH 平面PAD 思維點(diǎn)撥 解析 思維升華 例1 2 求證 GH 平面PAD 2 中可證明平面OHF 平面PAD 思維點(diǎn)撥 解析 思維升華 證明連結(jié)FH OH F H分別是PC CD的中點(diǎn) FH PD FH 平面PAD 又 O是BE的中點(diǎn) H是CD的中點(diǎn) 例1 2 求證 GH 平面PAD 思維點(diǎn)撥 解析 思維升華 OH AD OH 平面PAD 又FH OH H 平面OHF 平面PAD 又 GH 平面OHF GH 平面PAD 例1 2 求證 GH 平面PAD 思維點(diǎn)撥 解析 思維升華 例1 2 求證 GH 平面PAD 判斷或證明線面平行的常用方法 1 利用線面平行的定義 無公共點(diǎn) 2 利用線面平行的判定定理 a b a b a 3 利用面面平行的性質(zhì)定理 a a 4 利用面面平行的性質(zhì) a a a 跟蹤訓(xùn)練1 2013 福建改編 如圖 在四棱錐P ABCD中 PD 平面ABCD AB DC AB AD BC 5 DC 3 AD 4 PAD 60 1 若M為PA的中點(diǎn) 求證 DM 平面PBC 方法一證明如圖 取PB中點(diǎn)N 連結(jié)MN CN 在 PAB中 M是PA的中點(diǎn) 又CD AB CD 3 MN CD MN CD 四邊形MNCD為平行四邊形 DM CN 又DM 平面PBC CN 平面PBC DM 平面PBC 方法二證明如圖 取AB的中點(diǎn)E 連結(jié)ME DE 在梯形ABCD中 BE CD 且BE CD 四邊形BCDE為平行四邊形 DE BC 又DE 平面PBC BC 平面PBC DE 平面PBC 又在 PAB中 ME PB ME 平面PBC PB 平面PBC 又在 PAB中 ME PB ME 平面PBC PB 平面PBC ME 平面PBC 又DE ME E 平面DME 平面PBC 又DM 平面DME DM 平面PBC 2 求三棱錐D PBC的體積 題型二平面與平面平行的判定與性質(zhì) 例2 2013 陜西 如圖 四棱柱ABCD A1B1C1D1的底面ABCD是正方形 O為底面中心 A1O 平面ABCD AB AA1 1 證明 平面A1BD 平面CD1B1 解析 思維升華 解析 思維升華 證明由題設(shè)知 BB1綊DD1 四邊形BB1D1D是平行四邊形 BD B1D1 又BD 平面CD1B1 B1D1 平面CD1B1 BD 平面CD1B1 題型二平面與平面平行的判定與性質(zhì) 例2 2013 陜西 如圖 四棱柱ABCD A1B1C1D1的底面ABCD是正方形 O為底面中心 A1O 平面ABCD AB AA1 1 證明 平面A1BD 平面CD1B1 解析 思維升華 A1D1綊B1C1綊BC 四邊形A1BCD1是平行四邊形 A1B D1C 又A1B 平面CD1B1 D1C 平面CD1B1 A1B 平面CD1B1 又 BD A1B B 平面A1BD 平面CD1B1 題型二平面與平面平行的判定與性質(zhì) 例2 2013 陜西 如圖 四棱柱ABCD A1B1C1D1的底面ABCD是正方形 O為底面中心 A1O 平面ABCD AB AA1 1 證明 平面A1BD 平面CD1B1 解析 思維升華 證明面面平行的方法 1 面面平行的定義 2 面面平行的判定定理 如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面 那么這兩個(gè)平面平行 題型二平面與平面平行的判定與性質(zhì) 例2 2013 陜西 如圖 四棱柱ABCD A1B1C1D1的底面ABCD是正方形 O為底面中心 A1O 平面ABCD AB AA1 1 證明 平面A1BD 平面CD1B1 解析 思維升華 3 利用垂直于同一條直線的兩個(gè)平面平行 4 兩個(gè)平面同時(shí)平行于第三個(gè)平面 那么這兩個(gè)平面平行 5 利用 線線平行 線面平行 面面平行 的相互轉(zhuǎn)化 題型二平面與平面平行的判定與性質(zhì) 例2 2013 陜西 如圖 四棱柱ABCD A1B1C1D1的底面ABCD是正方形 O為底面中心 A1O 平面ABCD AB AA1 1 證明 平面A1BD 平面CD1B1 例2 2 求三棱柱ABD A1B1D1的體積 解 A1O 平面ABCD A1O是三棱柱ABD A1B1D1的高 例2 2 求三棱柱ABD A1B1D1的體積 跟蹤訓(xùn)練2如圖 在正方體ABCD A1B1C1D1中 S是B1D1的中點(diǎn) E F G分別是BC DC SC的中點(diǎn) 求證 1 直線EG 平面BDD1B1 證明如圖 連結(jié)SB E G分別是BC SC的中點(diǎn) EG SB 跟蹤訓(xùn)練2如圖 在正方體ABCD A1B1C1D1中 S是B1D1的中點(diǎn) E F G分別是BC DC SC的中點(diǎn) 求證 1 直線EG 平面BDD1B1 又 SB 平面BDD1B1 EG 平面BDD1B1 直線EG 平面BDD1B1 2 平面EFG 平面BDD1B1 證明連結(jié)SD F G分別是DC SC的中點(diǎn) FG SD 又 SD 平面BDD1B1 FG 平面BDD1B1 FG 平面BDD1B1 由 1 知 EG 平面BDD1B1 且EG 平面EFG FG 平面EFG EG FG G 平面EFG 平面BDD1B1 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 思維點(diǎn)撥 解析 思維升華 思維點(diǎn)撥 解析 思維升華 利用線面平行的性質(zhì)可以得到線線平行 可以先確定截面形狀 再建立目標(biāo)函數(shù)求最值 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 思維點(diǎn)撥 解析 思維升華 解 AB 平面EFGH 平面EFGH與平面ABC和平面ABD分別交于FG EH AB FG AB EH FG EH 同理可證EF GH 截面EFGH是平行四邊形 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 思維點(diǎn)撥 解析 思維升華 設(shè)AB a CD b FGH 即為異面直線AB和CD所成的角或其補(bǔ)角 又設(shè)FG x GH y 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 思維點(diǎn)撥 解析 思維升華 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 S EFGH FG GH sin 思維點(diǎn)撥 解析 思維升華 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 x 0 a x 0且x a x a為定值 當(dāng)且僅當(dāng)x a x時(shí) 思維點(diǎn)撥 解析 思維升華 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 即當(dāng)截面EFGH的頂點(diǎn)E F G H為棱AD AC BC BD的中點(diǎn)時(shí)截面面積最大 思維點(diǎn)撥 解析 思維升華 利用線面平行的性質(zhì) 可以實(shí)現(xiàn)與線線平行的轉(zhuǎn)化 尤其在截面圖的畫法中 常用來確定交線的位置 對(duì)于最值問題 常用函數(shù)思想來解決 題型三平行關(guān)系的綜合應(yīng)用 例3如圖所示 在四面體ABCD中 截面EFGH平行于對(duì)棱AB和CD 試問截面在什么位置時(shí)其截面面積最大 跟蹤訓(xùn)練3如圖所示 四棱錐P ABCD的底面是邊長(zhǎng)為a的正方形 側(cè)棱PA 底面ABCD 在側(cè)面PBC內(nèi) 有BE PC于E 且BE a 試在AB上找一點(diǎn)F 使EF 平面PAD 解在平面PCD內(nèi) 過E作EG CD交PD于G 連結(jié)AG 在AB上取點(diǎn)F 使AF EG EG CD AF EG AF 跟蹤訓(xùn)練3如圖所示 四棱錐P ABCD的底面是邊長(zhǎng)為a的正方形 側(cè)棱PA 底面ABCD 在側(cè)面PBC內(nèi) 有BE PC于E 且BE a 試在AB上找一點(diǎn)F 使EF 平面PAD 四邊形FEGA為平行四邊形 FE AG 又AG 平面PAD FE 平面PAD EF 平面PAD 跟蹤訓(xùn)練3如圖所示 四棱錐P ABCD的底面是邊長(zhǎng)為a的正方形 側(cè)棱PA 底面ABCD 在側(cè)面PBC內(nèi) 有BE PC于E 且BE a 試在AB上找一點(diǎn)F 使EF 平面PAD F即為所求的點(diǎn) 又PA 面ABCD PA BC 又BC AB BC 面PAB PB BC 跟蹤訓(xùn)練3如圖所示 四棱錐P ABCD的底面是邊長(zhǎng)為a的正方形 側(cè)棱PA 底面ABCD 在側(cè)面PBC內(nèi) 有BE PC于E 且BE a 試在AB上找一點(diǎn)F 使EF 平面PAD PC2 BC2 PB2 BC2 AB2 PA2 由PB BC BE PC得 跟蹤訓(xùn)練3如圖所示 四棱錐P ABCD的底面是邊長(zhǎng)為a的正方形 側(cè)棱PA 底面ABCD 在側(cè)面PBC內(nèi) 有BE PC于E 且BE a 試在AB上找一點(diǎn)F 使EF 平面PAD 跟蹤訓(xùn)練3如圖所示 四棱錐P ABCD的底面是邊長(zhǎng)為a的正方形 側(cè)棱PA 底面ABCD 在側(cè)面PBC內(nèi) 有BE PC于E 且BE a 試在AB上找一點(diǎn)F 使EF 平面PAD 答題模板系列5立體幾何中的探索性問題 規(guī)范解答 溫馨提醒 典例 14分 如圖 在四棱錐S ABCD中 已知底面ABCD為直角梯形 其中AD BC BAD 90 SA 底面ABCD SA AB BC 2 tan SDA 1 求四棱錐S ABCD的體積 答題模板 規(guī)范解答 溫馨提醒 解 SA 底面ABCD tan SDA SA 2 AD 3 由題意知四棱錐S ABCD的底面為直角梯形 且SA AB BC 2 規(guī)范解答 溫馨提醒 規(guī)范解答 溫馨提醒 1 立體幾何中的探索性問題主要是對(duì)平行 垂直關(guān)系的探究 對(duì)條件和結(jié)論不完備的開放性問題的探究 解決這類問題一般根據(jù)探索性問題的設(shè)問 假設(shè)其存在并探索出結(jié)論 然后在這個(gè)假設(shè)下進(jìn)行推理論證 若得到合乎情理的結(jié)論就肯定假設(shè) 若得到矛盾就否定假設(shè) 2 這類問題也可以按類似于分析法的格式書寫步驟 從結(jié)論出發(fā) 要使 成立 只需使 成立 規(guī)范解答 溫馨提醒 答題模板 規(guī)范解答 溫馨提醒 2 在棱SD上找一點(diǎn)E 使CE 平面SAB 并證明 解當(dāng)點(diǎn)E位于棱SD上靠近D的三等分點(diǎn)處時(shí) 可使CE 平面SAB 取SD上靠近D的三等分點(diǎn)為E 取SA上靠近A的三等分點(diǎn)為F 連結(jié)CE EF BF 答題模板 規(guī)范解答 溫馨提醒 BC綊EF CE BF 答題模板 規(guī)范解答 溫馨提醒 又 BF 平面SAB CE 平面SAB CE 平面SAB 答題模板 規(guī)范解答 溫馨提醒 解決立體幾何中的探索性問題的步驟 第一步 寫出探求的最后結(jié)論 第二步 證明探求結(jié)論的正確性 第三步 給出明確答案 第四步 反思回顧 查看關(guān)鍵點(diǎn) 易錯(cuò)點(diǎn)和答題規(guī)范 答題模板 規(guī)范解答 溫馨提醒 1 立體幾何中的探索性問題主要是對(duì)平行 垂直關(guān)系的探究 對(duì)條件和結(jié)論不完備的開放性問題的探究 解決這類問題一般根據(jù)探索性問題的設(shè)問 假設(shè)其存在并探索出結(jié)論 然后在這個(gè)假設(shè)下進(jìn)行推理論證 若得到合乎情理的結(jié)論就肯定假設(shè) 若得到矛盾就否定假設(shè) 2 這類問題也可以按類似于分析法的格式書寫步驟 從結(jié)論出發(fā) 要使 成立 只需使 成立 方法與技巧 1 平行問題的轉(zhuǎn)化關(guān)系 2 直線與平面平行的主要判定方法 1 定義法 2 判定定理 3 面與面平行的性質(zhì) 3 平面與平面平行的主要判定方法 1 定義法 2 判定定理 3 推論 4 a a 失誤與防范 1 在推證線面平行時(shí) 一定要強(qiáng)調(diào)直線不在平面內(nèi) 否則 會(huì)出現(xiàn)錯(cuò)誤 2 在解決線面 面面平行的判定時(shí) 一般遵循從 低維 到 高維 的轉(zhuǎn)化 即從 線線平行 到 線面平行 再到 面面平行 而在應(yīng)用性質(zhì)定理時(shí) 其順序恰好相反 但也要注意 轉(zhuǎn)化的方向總是由題目的具體條件而定 決不可過于 模式化 3 解題中注意符號(hào)語(yǔ)言的規(guī)范應(yīng)用 2 3 4 5 6 7 8 9 10 1 1 設(shè) 是兩個(gè)不同的平面 m n是平面 內(nèi)的兩條不同的直線 l1 l2是平面 內(nèi)的兩條相交直線 則 的一個(gè)充分而不必要條件是 m 且l1 l1 且l2 m 且n m l1且n l2解析m l1 且n l2 但 m l1且n l2 m l1 且n l2 是 的一個(gè)充分不必要條件 2 3 4 5 6 7 8 9 10 1 2 若直線a平行于平面 則下列結(jié)論錯(cuò)誤的是 填序號(hào) a平行于 內(nèi)的所有直線 內(nèi)有無數(shù)條直線與a平行 直線a上的點(diǎn)到平面 的距離相等 內(nèi)存在無數(shù)條直線與a成90 角 2 3 4 5 6 7 8 9 10 1 解析若直線a平行于平面 則 內(nèi)既存在無數(shù)條直線與a平行 也存在無數(shù)條直線與a異面且垂直 所以 不正確 正確 又夾在相互平行的線與平面間的平行線段相等 所以 正確 答案 2 3 4 5 6 7 8 9 10 1 3 如圖所示 四棱錐P ABCD的底面是一直角梯形 AB CD BA AD CD 2AB PA 底面ABCD E為PC的中點(diǎn) 則BE與平面PAD的位置關(guān)系是 2 3 4 5 6 7 8 9 10 1 解析取PD的中點(diǎn)F 連結(jié)EF AF 又 AB CD 且CD 2AB EF綊AB 四邊形ABEF為平行四邊形 EB AF 又 EB 面PAD AF 面PAD BE 面PAD 答案平行 2 3 4 5 6 7 8 9 10 1 4 給出下列關(guān)于互不相同的直線l m n和平面 的三個(gè)命題 若l與m為異面直線 l m 則 若 l m 則l m 若 l m n l 則m n 其中真命題的個(gè)數(shù)為 2 3 4 5 6 7 8 9 10 1 解析 中當(dāng) 與 不平行時(shí) 也可能存在符合題意的l m 中l(wèi)與m也可能異面 答案1 5 下列四個(gè)正方體圖形中 A B為正方體的兩個(gè)頂點(diǎn) M N P分別為其所在棱的中點(diǎn) 能得出AB 平面MNP的圖形的序號(hào)是 2 3 4 5 6 7 8 9 10 1 解析 中易知NP AA MN A B 平面MNP 平面AA B可得出AB 平面MNP 如圖 中 NP AB 能得出AB 平面MNP 答案 2 3 4 5 6 7 8 9 10 1 3 4 5 6 7 8 9 10 1 2 6 在四面體A BCD中 M N分別是 ACD BCD的重心 則四面體的四個(gè)面中與MN平行的是 解析如圖 取CD的中點(diǎn)E 則EM MA 1 2 EN BN 1 2 所以MN AB 所以MN 平面ABD MN 平面ABC 平面ABD與平面ABC 3 4 5 6 7 8 9 10 1 2 7 如圖所示 ABCD A1B1C1D1是棱長(zhǎng)為a的正方體 M N分別是下底面的棱A1B1 B1C1的中點(diǎn) P是上底面的棱AD上的一點(diǎn) AP 過P M N的平面交上底面于PQ Q在CD上 則PQ 3 4 5 6 7 8 9 10 1 2 解析 平面ABCD 平面A1B1C1D1 MN PQ M N分別是A1B1 B1C1的中點(diǎn) 3 4 5 6 7 8 9 10 1 2 8 在四面體ABCD中 截面PQMN是正方形 則在下列結(jié)論中 錯(cuò)誤的為 填序號(hào) AC BD AC 截面PQMN AC BD 異面直線PM與BD所成的角為45 3 4 5 6 7 8 9 10 1 2 解析 PQMN是正方形 MN QP 則MN 平面ABC 由線面平行的性質(zhì)知MN AC 則AC 截面PQMN 同理可得MQ BD 又MN QM 則AC BD 故 正確 又 BD MQ 異面直線PM與BD所成的角即為 PMQ 45 故 正確 答案 3 4 5 6 7 8 9 10 1 2 9 如圖 在直三棱柱ABC A1B1C1中 AB AC 5 BB1 BC 6 D E分別是AA1和B1C的中點(diǎn) 1 求證 DE 平面ABC 證明取BC中點(diǎn)G 連結(jié)AG EG 因?yàn)镋是B1C的中點(diǎn) 所以EG BB1 3 4 5 6 7 8 9 10 1 2 由直棱柱知 AA1綊BB1 而D是AA1的中點(diǎn) 所以EG綊AD 所以四邊形EGAD是平行四邊形 所以ED AG 又DE 平面ABC AG 平面ABC 所以DE 平面ABC 3 4 5 6 7 8 9 10 1 2 2 求三棱錐E BCD的體積 解因?yàn)锳D EG EG 平面BCE AD 平面BCE 所以AD 平面BCE 所以VE BCD VD BEC VA BCE VE ABC 由 1 知 DE 平面ABC 10 如圖 E F G H分別是正方體ABCD A1B1C1D1的棱BC CC1 C1D1 AA1的中點(diǎn) 求證 1 EG 平面BB1D1D 3 4 5 6 7 8 9 10 1 2 證明取B1D1的中點(diǎn)O 連結(jié)GO OB 易證四邊形BEGO為平行四邊形 故OB GE 由線面平行的判定定理即可證EG 平面BB1D1D 3 4 5 6 7 8 9 10 1 2 2 平面BDF 平面B1D1H 證明由題意可知BD B1D1 如圖 連結(jié)HB D1F 易證四邊形HBFD1是平行四邊形 故HD1 BF 又B1D1 HD1 D1 BD BF B 所以平面BDF 平面B1D1H 2 3 4 5 1 1 對(duì)于平面 和共面的直線m n 下列命題中為真命題的是 若m n與平面 所成的角相等 則m n 若m n 則m n 若m m n 則n 若m n 則m n 2 3 4 5 1 解析正三棱錐P ABC的側(cè)棱PA PB與底面所成角相等 但PA與PB相交 應(yīng)排除 若m n 則m與n平行或相交 應(yīng)排除 若m m n 則n 或n 應(yīng)排除 因?yàn)閙 n共面 設(shè)經(jīng)過m n的平面為 因?yàn)閙 所以 m 因?yàn)閚 所以n m 答案 2 3 4 5 1 2 如圖 在正方體ABCD A1B1C1D1中 E F G H分別是棱CC1 C1D1 D1D CD的中點(diǎn) N是BC的中點(diǎn) 動(dòng)點(diǎn)M在四邊形EFGH上及其內(nèi)部運(yùn)動(dòng) 則M滿足條件 時(shí) 有MN 平面B1BDD1 解析因?yàn)镠N BD HF DD1 所以平面NHF 平面B1BDD1 故線段FH上任意點(diǎn)M與N相連 都有MN 平面B1BDD1 M 線段FH 2 3 4 5 1 3 如圖 空間四邊形ABCD的兩條對(duì)棱AC BD的長(zhǎng)分別為5和4 則平行于兩條對(duì)棱的截面四邊形EFGH在平移過程中 周長(zhǎng)的取值范圍是 GH 5k EH 4 1 k 周長(zhǎng) 8 2k 又 0 k 1 周長(zhǎng)的范圍為 8 10 8 10 2 3 4 5 1 4 如圖 平面 內(nèi)有 ABC AB 5 BC 8 AC 7 梯形BCDE的底DE 2 過EB的中點(diǎn)B1的平面 若 分別交EA DC于A1 C1 求 A1B1C1的面積 解 A1B1 AB B1C1 BC 又因 A1B1C1與 ABC同向 2 3 4 5 1 A1B1C1 ABC ABC 60 A1B1C1 又 B1為EB的中點(diǎn) B1A1是 EAB的中位線 2 3 4 5 1 同理知B1C1為梯形BCDE的中位線 2 3 4 5 1 5 如圖 四棱錐P ABCD中 PD 平面ABCD 底面ABCD為矩形 PD DC 4 AD 2 E為PC的中點(diǎn) 1 求三棱錐A PDE的體積 解因?yàn)镻D 平面ABCD 所以PD AD 又因ABCD是矩形 所以AD CD 2 3 4 5 1 因PD CD D 所以AD 平面PCD 所以AD是三棱錐A PDE的高 因?yàn)镋為PC的中點(diǎn) 且PD DC 4 又AD 2 2 3 4 5 1 2 AC邊上是否存在一點(diǎn)M 使得PA 平面EDM 若存在 求出AM的長(zhǎng) 若不存在 請(qǐng)說明理由 解取AC中點(diǎn)M 連結(jié)EM DM 因?yàn)镋為PC的中點(diǎn) M是AC的中點(diǎn) 所以EM PA 又因?yàn)镋M 平面EDM PA 平面EDM 所以PA 平面EDM 2 3 4 5 1 2 3 4 5 1- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)大一輪復(fù)習(xí) 8.3直線、平面平行的判定與性質(zhì)課件 蘇教版 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 8.3 直線 平面 平行 判定 性質(zhì) 課件
鏈接地址:http://www.hcyjhs8.com/p-5642395.html