各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析).doc
《各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析).doc(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
操作探究 一.選擇題 1.(xx?臨安?3 分.)z 如圖,正方形硬紙片 ABCD 的邊長是 4,點(diǎn) E.F 分別是 AB.BC 的中 點(diǎn),若沿左圖中的虛線剪開,拼成如圖的一座“小別墅”,則圖中陰影部分的面積是( ) A.2 B.4 C.8 D.10 【分析】本題考查空間想象能力. 【解答】解:陰影部分由一個(gè)等腰直角三角形和一個(gè)直角梯形組成, 由第一個(gè)圖形可知:陰影部分的兩部分可構(gòu)成正方形的四分之一, 正方形的面積=44=16, ∴圖中陰影部分的面積是 164=4. 故選:B. 【點(diǎn)評】解決本題的關(guān)鍵是得到陰影部分的組成與原正方形面積之間的關(guān)系%@z#step~.co& 2. (xx?嘉興?3 分)將一張正方形紙片按如圖步驟①,②沿虛線對折兩次,然后沿③中平 行于底邊的虛線剪去一個(gè)角,展開鋪平后的圖形是( ) A. (A) B. (B) C. (C) D. (D) 【答案】A 【解析】【分析】根據(jù)兩次折疊都是沿著正方形的對角線折疊, 展開后所得圖形的頂點(diǎn)一定 在正方形的對角線上, 根據(jù)③的剪法,中間應(yīng)該是一個(gè)正方形. 【解答】根據(jù)題意,兩次折疊都是沿著正方形的對角線折疊的,根據(jù)③的剪法,展開后所得 圖形的頂點(diǎn)一定在正方形的對角線上,而且中間應(yīng)該是一個(gè)正方形. 故選 A. 【點(diǎn)評】關(guān)鍵是要理解折疊的過程,得到關(guān)鍵信息,如本題得到展開后的圖形的頂點(diǎn)在正方 形的對角線上是解題的關(guān)鍵. 3. (xx?廣西南寧?3 分)如圖,矩形紙片 ABCD,AB=4,BC=3,點(diǎn) P 在 BC 邊上,將△CDP 沿 DP 折疊,點(diǎn) C 落在點(diǎn) E 處,PE.DE 分別交 AB 于點(diǎn) O、F,且 OP=OF,則 cos∠ADF 的值為 ( ) A. B. C. D. 【分析】根據(jù)折疊的性質(zhì)可得出 DC=DE.CP=EP,由∠EOF=∠BOP、∠B=∠E.OP=OF 可得出 △OEF≌△OBP(AAS),根據(jù)全等三角形的性質(zhì)可得出 OE=OB.EF=BP,設(shè) EF=x,則 BP=x、DF=4 ﹣x、BF=PC=3﹣x,進(jìn)而可得出 AF=1+x,在 Rt△DAF 中,利用勾股定理可求出 x 的值,再利 用余弦的定義即可求出 cos∠ADF 的值. 【解答】解:根據(jù)折疊,可知:△DCP≌△DEP, ∴DC=DE=4,CP=EP. 在△OEF 和△OBP 中,, ∴△OEF≌△OBP(AAS), ∴OE=OB,EF=BP. 設(shè) EF=x,則 BP=x,DF=DE﹣EF=4﹣x, 又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x, ∴AF=AB﹣BF=1+x. 在 Rt△DAF 中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2, 解得:x=, ∴DF=4﹣x=, ∴cos∠ADF==. 故選:C. 【點(diǎn)評】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及解直角三角形,利用勾股定理 結(jié)合 AF=1+x,求出 AF 的長度是解題的關(guān)鍵. 4.(xx?海南?3 分)如圖 1,分別沿長方形紙片 ABCD 和正方形紙片 EFGH 的對角線 AC,EG 剪開,拼成如圖 2 所示的?KLMN,若中間空白部分四邊形 OPQR 恰好是正方形,且?KLMN 的面 積為 50,則正方形 EFGH 的面積為( ) A.24 B.25 C.26 D.27 【分析】如圖,設(shè) PM=PL=NR=AR=a,正方形 ORQP 的邊長為 b,構(gòu)建方程即可解決問題; 【解答】解:如圖,設(shè) PM=PL=NR=AR=a,正方形 ORQP 的邊長為 b. 由題意:a2+b2+(a+b)(a﹣b)=50, ∴a2=25, ∴正方形 EFGH 的面積=a2=25, 故選:B. 【點(diǎn)評】本題考查圖形的拼剪,矩形的性質(zhì),正方形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會(huì)利用 參數(shù)構(gòu)建方程解決問題,學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題,屬于中考選擇題中的壓軸題. 二.填空題 1. (xx?杭州?4 分)折疊矩形紙片 ABCD 時(shí),發(fā)現(xiàn)可以進(jìn)行如 下操作:①把△ADE 翻折,點(diǎn) A 落在 DC 邊上的點(diǎn) F 處,折痕為 DE,點(diǎn) E 在 AB 邊上;②把紙 片展開并鋪平;③把△CDG 翻折,點(diǎn) C 落在直線 AE 上的點(diǎn) H 處,折痕為 DG,點(diǎn) G 在 BC 邊上, 若 AB=AD+2,EH=1,則 AD= 。 【答案】或 3 【考點(diǎn)】勾股定理,矩形的性質(zhì),正方形的性質(zhì),翻折變換(折疊問題) 【解析】【解答】∵當(dāng)點(diǎn) H 在線段 AE 上時(shí)把△ADE 翻折,點(diǎn) A 落在 DC 邊上的點(diǎn) F 處,折痕 為 DE,點(diǎn) E 在 AB 邊上 ∴四邊形 ADFE 是正方形 ∴AD=AE ∵AH=AE-EH=AD-1 ∵把△CDG 翻折,點(diǎn) C 落在直線 AE 上的點(diǎn) H 處,折痕為 DG,點(diǎn) G 在 BC 邊上 ∴DC=DH=AB=AD+2 在Rt△ADH 中,AD2+AH2=DH2 ∴AD2+(AD-1)2=(AD+2)2 解之:AD=,AD=(舍去) ∴AD= 當(dāng)點(diǎn) H 在線段 BE 上時(shí) 則 AH=AE-EH=AD+1 在Rt△ADH中,AD2+AH2=DH2 ∴AD2+(AD+1)2=(AD+2)2 解之:AD=3,AD=-1(舍去) 故答案為: 或 3 【分析】分兩種情況:當(dāng)點(diǎn) H 在線段 AE 上;當(dāng)點(diǎn) H 在線段 BE 上。根據(jù)①的折疊,可得出四 邊形 ADFE 是正方形,根據(jù)正方形的性質(zhì)可得出 AD=AE,從而可得出 AH=AD-1(或 AH=AD+1), 再根據(jù)②的折疊可得出 DH=AD+2,然后根據(jù)勾股定理求出 AD 的長。 2.(xx?臨安?3 分.)馬小虎準(zhǔn)備制作一個(gè)封閉的正方體盒子,他先用 5 個(gè)大小一樣的正 方形制成如圖所示的拼接圖形(實(shí)線部分),經(jīng)折疊后發(fā)現(xiàn)還少一個(gè)面,請你在圖中的拼接 圖形上再接一個(gè)正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個(gè)封閉的正方體盒子(添加 所有符合要求的正方形,添加的正方形用陰影表示) . 【分析】由平面圖形的折疊及正方體的展開圖解題. 【解答】解:, 故答案為:. 【點(diǎn)評】本題通過考查正方體的側(cè)面展開圖,展示了這樣一個(gè)教學(xué)導(dǎo)向,教學(xué)中要讓學(xué)生確 實(shí)經(jīng)歷活動(dòng)過程,而不要將活動(dòng)層次停留于記憶水平.我們有些老師在教學(xué)“展開與折疊” 時(shí),不是去引導(dǎo)學(xué)生動(dòng)手操作,而是給出幾種結(jié)論,這樣教出的學(xué)生肯定遇到動(dòng)手操作題型 時(shí)就束手無策了. 3. (xx?金華、麗水?4 分)如圖 2,小靚用七巧板拼成一幅裝飾圖,放入長方形 ABCD 內(nèi), 裝飾圖中的三角形頂點(diǎn) E ,F(xiàn) 分別在邊 AB ,BC 上,三角形①的邊 GD 在邊 AD 上,則 的值是 . 【解析】【解答】解:如圖,過 G 作 GH⊥BC 交 BC 于 H,交三角形②斜邊于點(diǎn) I, 則 AB=GH=GI+HI,BC=AD=AG+GD=EI+GD。 設(shè)原來七巧板的邊長為 4, 則三角形②斜邊的長度=4,GI= ,三角形③斜邊長 IH= , 則 AB=GI+IH= +2, 而 AG=EI=4,GD=4, 則 BC=8,∴ 故答案為: 。 【分析】可設(shè)原來七巧板的邊長為 4(或一個(gè)字母),在圖 2 中,可分別求出 AB 與 BC 的長。 過 G 作 BC 的垂線段,垂足為 H,則 AB=GH,而 GH 恰好是三角形②斜邊上高的長度與三角形 ③斜邊長度的和;同樣的可求出 BC 的,求比值即可。 4. (xx湖北省恩施3 分)在 Rt△ABC 中,AB=1,∠A=60,∠ABC=90,如圖所示 將 Rt△ABC 沿直線 l 無滑動(dòng)地滾動(dòng)至 Rt△DEF,則點(diǎn) B 所經(jīng)過的路徑與直線 l 所圍成的封閉 圖形的面積為 .(結(jié)果不取近似值) 【分析】先得到∠ACB=30,BC=,利用旋轉(zhuǎn)的性質(zhì)可得到點(diǎn) B 路徑分部分:第一部分為 以直角三角形 30的直角頂點(diǎn)為圓心,為半徑,圓心角為 150的弧長;第二部分為以 直角三角形 60的直角頂點(diǎn)為圓心,1 為半徑,圓心角為 120的弧長,然后根據(jù)扇形的面 積公式計(jì)算點(diǎn) B 所經(jīng)過的路徑與直線 l 所圍成的封閉圖形的面積. 【解答】解:∵Rt△ABC 中,∠A=60,∠ABC=90, ∴∠ACB=30,BC=, 將 Rt△ABC 沿直線 l 無滑動(dòng)地滾動(dòng)至 Rt△DEF,點(diǎn) B 路徑分部分:第一部分為以直角三角形 30的直角頂點(diǎn)為圓心 為半徑,圓心角為 150的弧長;第二部分為以直角三角形 60 的直角頂點(diǎn)為圓心,1 為半徑,圓心角為 120的弧長; ∴ 點(diǎn) B 所 經(jīng) 過 的 路 徑 與 直 線 l 所 圍 成 的 封 閉 圖 形 的 面 積 =. 故答案為. 【點(diǎn)評】本題考查了軌跡:利用特殊幾何圖形描述點(diǎn)運(yùn)動(dòng)的軌跡,然后利用幾何性質(zhì)計(jì)算相 應(yīng)的幾何量. 5.(xx?貴州貴陽?8 分)如圖①,在 Rt△ABC 中,以下是小亮探究與之間關(guān)系 的方法: ∵sinA=,sinB= ∴c=,c= ∴= 根據(jù)你掌握的三角函數(shù)知識.在圖②的銳角△ABC 中,探究、、之間的關(guān) 系,并寫出探究過程. 【分析】三式相等,理由為:過 A 作 AD⊥BC,BE⊥AC,在直角三角形 ABD 中,利用銳角三 角函數(shù)定義表示出 AD,在直角三角形 ADC 中,利用銳角三角函數(shù)定義表示出 AD,兩者相等 即可得證. 【解答】解:==,理由為: 過 A 作 AD⊥BC,BE⊥AC, 在 Rt△ABD 中,sinB=,即 AD=csinB, 在 Rt△ADC 中,sinC=,即 AD=bsinC, ∴csinB=bsinC,即= , 同理可得= 則= =. 【點(diǎn)評】此題考查了解直角三角形,熟練掌握銳角三角函數(shù)定義是解本題的關(guān)鍵. 三.解答題 1.(xx?江蘇無錫?10 分)如圖,平面直角坐標(biāo)系中,已知點(diǎn) B 的坐標(biāo)為(6,4). (1)請用直尺(不帶刻度)和圓規(guī)作一條直線 AC,它與 x 軸和 y 軸的正半軸分別交于點(diǎn) A 和點(diǎn) C,且使∠ABC=90,△ABC 與△AOC 的面積相等.(作圖不必寫作法,但要保留作圖痕 跡.) (2)問:(1)中這樣的直線 AC 是否唯一?若唯一,請說明理由;若不唯一,請?jiān)趫D中畫出 所有這樣的直線 AC,并寫出與之對應(yīng)的函數(shù)表達(dá)式. 【分析】(1)①作線段 OB 的垂直平分線 AC,滿足條件,②作矩形 OA′BC′,直線 A′C′, 滿足條件; (2)分兩種情形分別求解即可解決問題; 【解答】(1)解:如圖△ABC 即為所求; (2)解:這樣的直線不唯一. ①作線段 OB 的垂直平分線 AC,滿足條件,此時(shí)直線的解析式為 y=﹣x+ ②作矩形 OA′BC′,直線 A′C′,滿足條件,此時(shí)直線 A′C′的解析式為 y=﹣x+4. 【點(diǎn)評】本題考查作圖﹣復(fù)雜作圖,待定系數(shù)法等知識,解題的關(guān)鍵是熟練掌握基本知識, 屬于中考常考題型. 2.(xx?江蘇徐州?7 分)如圖,方格紙中的每個(gè)小方格都是邊長為 1 個(gè)單位的正方形,在 建立平面直角坐標(biāo)系后,△ABC 的頂點(diǎn)均在格點(diǎn)上,點(diǎn) B 的坐標(biāo)為(1,0) ①畫出△ABC 關(guān)于 x 軸對稱的△A1B1C1; ②畫出將△ABC 繞原點(diǎn) O 按逆時(shí)針旋轉(zhuǎn) 90所得的△A2B2C2; ③△A1B1C1 與△A2B2C2 成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸; ④△A1B1C1 與△A2B2C2 成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標(biāo). 【分析】(1)將三角形的各頂點(diǎn),向 x 軸作垂線并延長相同長度得到三點(diǎn)的對應(yīng)點(diǎn),順次連 接; (2)將三角形的各頂點(diǎn),繞原點(diǎn) O 按逆時(shí)針旋轉(zhuǎn) 90得到三點(diǎn)的對應(yīng)點(diǎn).順次連接各對應(yīng) 點(diǎn)得△A2B2C2; (3)從圖中可發(fā)現(xiàn)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應(yīng)點(diǎn)的線 段,做它的垂直平分線; (4)成中心對稱圖形,畫出兩條對應(yīng)點(diǎn)的連線,交點(diǎn)就是對稱中心. 【解答】解:如下圖所示: (3)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應(yīng)點(diǎn)的線段,作它的垂 直平分線, 或連接 A1C1,A2C2 的中點(diǎn)的連線為對稱軸. (4)成中心對稱,對稱中心為線段 BB2 的中點(diǎn) P,坐標(biāo)是(,). 【點(diǎn)評】本題綜合考查了圖形的變換,在圖形的變換中,關(guān)鍵是找到圖形的對應(yīng)點(diǎn). 3.(xx?山東東營市?10 分)(1)某學(xué)?!爸腔鄯綀@”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目: 如圖 1,在△ABC 中,點(diǎn) O 在線段 BC 上,∠BAO=30,∠OAC=75,AO=,BO:CO=1: 3,求 AB 的長. 經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn) B 作 BD∥AC,交 AO 的延長線于點(diǎn) D,通過構(gòu)造△ABD 就可以 解決問題(如圖 2). 請回答:∠ADB= 75 ,AB= 4 . (2)請參考以上解決思路,解決問題: 如圖 3,在四邊形 ABCD 中,對角線 AC 與 BD 相交于點(diǎn) O,AC⊥AD,AO=,∠ABC=∠ACB=75, BO:OD=1:3,求 DC 的長. 【分析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75,結(jié)合∠BOD=∠COA 可得出 △BOD∽△COA,利用相似三角形的性質(zhì)可求出 OD 的值,進(jìn)而可得出 AD 的值,由三角形內(nèi)角 和定理可得出∠ABD=75=∠ADB,由等角對等邊可得出 AB=AD=4,此題得解; (2)過點(diǎn) B 作 BE∥AD 交 AC 于點(diǎn) E,同(1)可得出 AE=4,在 Rt△AEB 中,利用勾股定 理可求出 BE 的長度,再在 Rt△CAD 中,利用勾股定理可求出 DC 的長,此題得解. 【解答】解:(1)∵BD∥AC, ∴∠ADB=∠OAC=75. ∵∠BOD=∠COA, ∴△BOD∽△COA, ∴==. 又∵AO=, ∴OD=AO=, ∴AD=AO+OD=4. ∵∠BAD=30,∠ADB=75, ∴∠ABD=180﹣∠BAD﹣∠ADB=75=∠ADB, ∴AB=AD=4. 故答案為:75;4. (2)過點(diǎn) B 作 BE∥AD 交 AC 于點(diǎn) E,如圖所示. ∵AC⊥AD,BE∥AD, ∴∠DAC=∠BEA=90. ∵∠AOD=∠EOB, ∴△AOD∽△EOB, ∴==. ∵BO:OD=1:3, ∴==. ∵AO=3, ∴EO=, ∴AE=4. ∵∠ABC=∠ACB=75, ∴∠BAC=30,AB=AC, ∴AB=2BE. 在 Rt△AEB 中,BE2+AE2=AB2,即(4)2+BE2=(2BE2, 解得:BE=4, ∴AB=AC=8,AD=12. 在 Rt△CAD 中,AC2+AD2=CD2,即 82+122=CD2, 解得:CD=4. 【點(diǎn)評】本題考查了相似三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理以及平行線的 性質(zhì),解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)求出 OD 的值;(2)利用勾股定理求出 BE.CD 的長度. 4.(xx?山東濟(jì)寧市?7 分)在一次數(shù)學(xué)活動(dòng)課中,某數(shù)學(xué)小組探究求環(huán)形花壇(如圖所 示) 面積的方法,現(xiàn)有以下工具;①卷尺;②直棒 EF;③T 型尺(CD 所在的直線垂 直 平分線段 AB). (1)在圖 1 中,請你畫出用 T 形尺找大圓圓心的示意圖(保留畫圖痕跡,不寫 畫法); (2)如圖 2,小華說:“我只用一根直棒和一個(gè)卷尺就可以求出環(huán)形花壇的面積, 具體做 法如下: 將直棒放置到與小圓相切,用卷尺量出此時(shí)直棒與大圓兩交點(diǎn) M,N 之間的距離, 就可 求出環(huán)形花壇的面積”如果測得 MN=10m,請你求出這個(gè)環(huán)形花壇的面積. 【解答】解:(1)如圖點(diǎn) O 即為所求; (2)設(shè)切點(diǎn)為C,連接OM,OC. ∵M(jìn)N 是切線, ∴OC⊥MN, ∴CM=CN=5,∴OM2﹣OC2=CM2=25, ∴S 圓環(huán)=π ?OM2﹣π ?OC2=25π . 5.一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問題:如圖 1,點(diǎn) P 是正方形 ABCD 內(nèi)一點(diǎn),PA=1, PB=2,PC=3.你能求出∠APB 的度數(shù)嗎? 小明通過觀察、分析、思考,形成了如下思路: 思路一:將△BPC 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 90,得到△BP′A,連接 PP′,求出∠APB 的度數(shù); 思路二:將△APB 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn) 90,得到△CPB,連接 PP′,求出∠APB 的度數(shù). 請參考小明的思路,任選一種寫出完整的解答過程. 【類比探究】 如圖 2,若點(diǎn) P 是正方形 ABCD 外一點(diǎn),PA=3,PB=1,PC=,求∠APB 的度數(shù). 【分析】(1)思路一、先利用旋轉(zhuǎn)求出∠PBP=90,BP=BP=2,AP=CP=3,利用勾股定理 求出 PP,進(jìn)而判斷出△APP是直角三角形,得出∠APP=90,即可得出結(jié)論; 思路二、同思路一的方法即可得出結(jié)論; (2)同(1)的思路一的方法即可得出結(jié)論. 【解答】解:(1)思路一、如圖 1, 將△BPC 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 90,得到△BP′A,連接 PP′, ∴△ABP≌△CBP, ∴∠PBP=90,BP=BP=2,AP=CP=3, 在 Rt△PBP中,BP=BP=2, ∴∠BPP=45,根據(jù)勾股定理得,PP=BP=2, ∵AP=1, ∴AP2+PP2=1+8=9, ∵AP2=32=9, ∴AP2+PP2=AP2, ∴△APP是直角三角形,且∠APP=90, ∴∠APB=∠APP+∠BPP=90+45=135; 思路二、同思路一的方法; (2)如圖 2, 將△BPC 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 90,得到△BP′A,連接 PP′, ∴△ABP≌△CBP, ∴∠PBP=90,BP=BP=1,AP=CP=, 在 Rt△PBP中,BP=BP=1, ∴∠BPP=45,根據(jù)勾股定理得,PP=BP=, ∵AP=3, ∴AP2+PP2=9+2=11, ∵AP2=()2=11, ∴AP2+PP2=AP2, ∴△APP是直角三角形,且∠APP=90, ∴∠APB=∠APP﹣∠BPP=90﹣45=45. 【點(diǎn)評】此題是四邊形綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),直角三角形的性質(zhì) 和判定,勾股定理,正確作出輔助線是解本題的關(guān)鍵. 6. (xx?金華、麗水?8 分)如圖,在 66 的網(wǎng)格中,每個(gè)小正方形的邊長為 1,點(diǎn) A 在 格點(diǎn)(小正方形的頂點(diǎn))上.試在各網(wǎng)格中畫出頂點(diǎn)在格點(diǎn)上,面積為 6,且符合相應(yīng)條件 的圖形.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 各地中考數(shù)學(xué)試卷分類匯編 操作探究含解析 各地 中考 數(shù)學(xué)試卷 分類 匯編 操作 探究 解析
鏈接地址:http://www.hcyjhs8.com/p-6076441.html