《(通用版)2019版高考數(shù)學二輪復習 第一部分 專題一 函數(shù)的圖象與性質(zhì)講義 理(重點生含解析).doc》由會員分享,可在線閱讀,更多相關《(通用版)2019版高考數(shù)學二輪復習 第一部分 專題一 函數(shù)的圖象與性質(zhì)講義 理(重點生含解析).doc(23頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題一 函數(shù)的圖象與性質(zhì)
卷Ⅰ
卷Ⅱ
卷Ⅲ
2018
________
函數(shù)圖象的辨識T3
函數(shù)圖象的辨識T7
抽象函數(shù)的奇偶性與周期性T11
2017
利用函數(shù)的單調(diào)性、奇偶性解不等式T5
________
分段函數(shù)、解不等式T15
2016
函數(shù)圖象辨識T7
函數(shù)圖象的對稱性T12
__________
縱向把握趨勢
卷Ⅰ3年2考,涉及函數(shù)圖象的識別以及函數(shù)的單調(diào)性、奇偶性與不等式的綜合問題,試題均出現(xiàn)在選擇題上,難度適中,預計2019年會重點考查分段函數(shù)的有關性質(zhì)及應用
卷Ⅱ3年3考,涉及函數(shù)圖象的辨識以及抽象函數(shù)的性質(zhì),其中函數(shù)圖象的識別難度較小,而函數(shù)性質(zhì)難度偏大,均出現(xiàn)在選擇題中,預計2019年會以選擇題的形式考查分段函數(shù)、函數(shù)的性質(zhì)等
卷Ⅲ3年2考,涉及函數(shù)圖象的辨識、分段函數(shù)與不等式的綜合問題,既有選擇題,也有填空題,難度適中,預計2019年會以選擇題的形式考查函數(shù)的單調(diào)性、奇偶性等性質(zhì)
橫向把握重點
1.高考對此部分內(nèi)容的命題多集中于函數(shù)的概念、函數(shù)的性質(zhì)及分段函數(shù)等方面,多以選擇題、填空題形式考查,一般出現(xiàn)在第5~10或第13~15題的位置上,難度一般.主要考查函數(shù)的定義域、分段函數(shù)求值或分段函數(shù)中參數(shù)的求解及函數(shù)圖象的判斷.
2.此部分內(nèi)容有時也出現(xiàn)在選擇、填空中的壓軸題的位置,多與導數(shù)、不等式、創(chuàng)新性問題結合命題,難度較大.
函數(shù)的概念及表示
[題組全練]
1.(2018長春質(zhì)檢)函數(shù)y=+的定義域是( )
A.[-1,0)∪(0,1) B.[-1,0)∪(0,1]
C.(-1,0)∪(0,1] D.(-1,0)∪(0,1)
解析:選D 由題意得
解得-1
2時,f (x)=f (x-4),故f (x)在x>-2時的周期為4,則f (-2 018)=f (2 018)=f (2 016+2)=f (2)=e2.
3.設f (x)=若f (a)=f (a+1),則f =( )
A.2 B.4
C.6 D.8
解析:選C 當0<a<1時,a+1>1,f (a)=,f (a+1)=2(a+1-1)=2a,∵f (a)=f (a+1),∴=2a,
解得a=或a=0(舍去).
∴f =f (4)=2(4-1)=6.
當a≥1時,a+1≥2,∴f (a)=2(a-1),
f (a+1)=2(a+1-1)=2a,∴2(a-1)=2a,無解.
綜上,f =6.
4.已知函數(shù)f (x)=則f (f (x))<2的解集為________.
解析:因為當x≥1時,f (x)=x3+x≥2,當x<1時,f (x)=2ex-1<2,所以f (f (x))<2等價于f (x)<1,即2ex-1<1,解得x<1-ln 2,所以f (f (x))<2的解集為(-∞,1-ln 2).
答案:(-∞,1-ln 2)
5.(2018成都模擬)設函數(shù)f :R→R滿足f (0)=1,且對任意x,y∈R都有f (xy+1)=f (x)f (y)-f (y)-x+2,則f (2 018)=________.
解析:令x=y(tǒng)=0,則f (1)=f (0)f (0)-f (0)-0+2=11-1-0+2=2.
令y=0,則f (1)=f (x)f (0)-f (0)-x+2.
將f (0)=1,f (1)=2代入,得f (x)=1+x,
所以f (2 018)=2 019.
答案:2 019
[系統(tǒng)方法]
1.函數(shù)定義域的求法
求函數(shù)的定義域,其實質(zhì)就是以函數(shù)解析式所含運算有意義為準則,列出不等式或不等式組,然后求出解集即可.
2.分段函數(shù)問題的4種常見類型及解題策略
常見類型
解題策略
求函數(shù)值
弄清自變量所在區(qū)間,然后代入對應的解析式,求“層層套”的函數(shù)值,要從最內(nèi)層逐層往外計算
解不等式
根據(jù)分段函數(shù)中自變量取值范圍的界定,代入相應的解析式求解,但要注意取值范圍的大前提
求參數(shù)
“分段處理”,采用代入法列出各區(qū)間上的方程
利用函數(shù)
性質(zhì)求值
必須依據(jù)條件找到函數(shù)滿足的性質(zhì),利用該性質(zhì)求解
函數(shù)的圖象及應用
[由題知法]
(1)(2018全國卷Ⅱ)函數(shù)f (x)=的圖象大致為( )
(2)如圖,已知l1⊥l2,圓心在l1上、半徑為1 m 的圓O在t=0時與l2相切于點A,圓O沿l1以1 m/s的速度勻速向上移動,圓被直線l2所截上方圓弧長記為x,令y=cos x,則y與時間t(0≤t≤1,單位:s)的函數(shù)y=f (t)的圖象大致為( )
(3)已知函數(shù)f (x)=若存在x1,x2,當0≤x10,排除D選項.
又e>2,∴<,
∴e->1,排除C選項.故選B.
(2)如圖,設∠MON=α,由弧長公式知x=α.
在Rt△AOM中,|AO|=1-t,
cos==1-t,
∴y=cos x=2cos2-1=2(1-t)2-1.又0≤t≤1,故選 B.
(3)畫出函數(shù)大致圖象如圖所示.
由圖象知,-≤x1<,≤x2<1,x1+=2x2-1,于是x1f (x2)=x12x2-1=x1,-≤x1<,轉化為關于x1的二次函數(shù)在給定區(qū)間上的值域問題,易得x1f (x2)的取值范圍是.
[答案] (1)B (2)B (3)
[類題通法]
1.由函數(shù)解析式識別函數(shù)圖象的策略
2.根據(jù)動點變化過程確定其函數(shù)圖象的策略
(1)先根據(jù)已知條件求出函數(shù)解析式后再判斷其對應的函數(shù)的圖象.
(2)采用“以靜觀動”,即將動點處于某些特殊的位置處考查圖象的變化特征,從而作出選擇.
(3)根據(jù)動點中變量變化時,對因變量變化的影響,結合選項中圖象的變化趨勢作出判斷.
[應用通關]
1.(2018全國卷Ⅲ)函數(shù)y=-x4+x2+2的圖象大致為( )
解析:選D 法一:令f (x)=-x4+x2+2,
則f ′(x)=-4x3+2x,
令f ′(x)=0,得x=0或x=,
則f ′(x)>0的解集為∪,
f (x)單調(diào)遞增;f ′(x)<0的解集為∪,+∞,f (x)單調(diào)遞減,結合圖象知選D.
法二:當x=1時,y=2,所以排除A、B選項.當x=0時,y=2,而當x=時,y=-++2=2>2,所以排除C選項.故選D.
2.如圖,長方形ABCD的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記∠BOP=x.將動點P到A,B兩點距離之和表示為x的函數(shù)f (x),則y=f (x)的圖象大致為( )
解析:選B 當x∈時,f (x)=tan x+,圖象不會是直線段,從而排除A、C.當x∈時,f =f =1+,f =2.
∵2<1+,∴f 0時,f (x)單調(diào)遞增,且f (1)=0,若f (x-1)>0,則x的取值范圍為( )
A.(0,1)∪(2,+∞) B.(-∞,0)∪(2,+∞)
C.(-∞,0)∪(3,+∞) D.(-∞,-1)∪(1,+∞)
(2)(2018益陽、湘潭調(diào)研)定義在R上的函數(shù)f (x),滿足f (x+5)=f (x),當x∈(-3,0]時,f (x)=-x-1,當x∈(0,2]時,f (x)=log2x,則f (1)+f (2)+f (3)+…+f (2 018)的值等于( )
A.403 B.405
C.806 D.809
(3)已知定義在R上的奇函數(shù)f (x)滿足f (x+3)=f (x),且當x∈時,f (x)=-x3,則f =________.
[解析] (1)由于函數(shù)f (x)是奇函數(shù),且當x>0時f (x)單調(diào)遞增,f (1)=0,所以f (-1)=0,故由f (x-1)>0,得-11,所以02,故選A.
(2)定義在R上的函數(shù)f (x),滿足f (x+5)=f (x),即函數(shù)f (x)的周期為5.
又當x∈(0,2]時,f (x)=log2x,所以f (1)=log21=0,f (2)=log22=1.
當x∈(-3,0]時,f (x)=-x-1,
所以f (3)=f (-2)=1,f (4)=f (-1)=0,
f (5)=f (0)=-1.
所以f (1)+f (2)+f (3)+…+f (2 018)
=403[f (1)+f (2)+f (3)+f (4)+f (5)]+f (2 016)+f (2 017)+f (2 018)
=4031+f (1)+f (2)+f (3)=403+0+1+1=405.
(3)由f (x+3)=f (x)知函數(shù)f (x)的周期為3,
又函數(shù)f (x)為奇函數(shù),
所以f =f =-f =3=.
[答案] (1)A (2)B (3)
[類題通法] 函數(shù)性質(zhì)的應用技巧
奇偶性
具有奇偶性的函數(shù)在關于原點對稱的區(qū)間上其圖象、函數(shù)值、解析式和單調(diào)性聯(lián)系密切,研究問題時可轉化到只研究部分(一半)區(qū)間上.尤其注意偶函數(shù)f (x)的性質(zhì):f (|x|)=f (x)
單調(diào)性
可以比較大小,求函數(shù)最值,解不等式,證明方程根的唯一性
周期性
利用周期性可以轉化函數(shù)的解析式、圖象和性質(zhì),把不在已知區(qū)間上的問題,轉化到已知區(qū)間上求解
對稱性
利用其軸對稱或中心對稱可將研究的問題,轉化到另一對稱區(qū)間上研究
[應用通關]
1.(2018貴陽模擬)已知函數(shù)f (x)=,則下列結論正確的是( )
A.函數(shù)f (x)的圖象關于點(1,2)中心對稱
B.函數(shù)f (x)在(-∞,1)上是增函數(shù)
C.函數(shù)f (x)的圖象上至少存在兩點A,B,使得直線AB∥x軸
D.函數(shù)f (x)的圖象關于直線x=1對稱
解析:選A 因為y===+2,所以該函數(shù)圖象可以由y=的圖象向右平移1個單位長度,再向上平移2個單位長度得到,所以函數(shù)f (x)的圖象關于點(1,2)中心對稱,A正確,D錯誤.易知函數(shù)f (x)在(-∞,1)上單調(diào)遞減,故B錯誤.易知函數(shù)f (x)的圖象是由y=的圖象平移得到的,所以不存在兩點A,B使得直線AB∥x軸,C錯誤.故選A.
2.(2019屆高三惠州調(diào)研)已知函數(shù)y=f (x)的定義域為R,且滿足下列三個條件:
①對任意的x1,x2∈[4,8],當x10恒成立;②f (x+4)=-f (x);③y=f (x+4)是偶函數(shù).若a=f (6),b=f (11),c=f (2 017),則a,b,c的大小關系正確的是( )
A.a(chǎn)0)
④若f (x+a)=f (x+b)(a≠b),則T=|a-b|;
⑤若f (2a-x)=f (x)且f (2b-x)=f (x)(a≠b),則T=2|b-a|.
[增分集訓]
1.定義在R上的函數(shù)y=f (x)為減函數(shù),且函數(shù)y=f (x-1)的圖象關于點(1,0)對稱.若f (x2-2x)+f (2b-b2)≤0,且0≤x≤2,則x-b的取值范圍是( )
A.[-2,0] B.[-2,2]
C.[0,2] D.[0,4]
解析:選B 設P(x,y)為函數(shù)y=f (x-1)的圖象上的任意一點,P關于點(1,0)對稱的點為(2-x,-y),∴f (2-x-1)=-f (x-1),即f (1-x)=-f (x-1).∴不等式f (x2-2x)+f (2b-b2)≤0可化為f (x2-2x)≤-f (2b-b2)=f (1-1-2b+b2)=f (b2-2b).∵函數(shù)y=f (x)為定義在R上的減函數(shù),∴x2-2x≥b2-2b,即(x-1)2≥(b-1)2.∵0≤x≤2,∴或
畫出可行域如圖中陰影部分所示.
設x-b=z,則b=x-z,由圖可知,當直線b=x-z經(jīng)過點(0,2)時,z取得最小值-2;當直線b=x-z經(jīng)過點(2,0)時,z取得最大值2.綜上可得,x-b的取值范圍是[-2,2].
2.(2018沈陽模擬)設f (x)是定義在R上的偶函數(shù),F(xiàn)(x)=(x+2)3f (x+2)-17,G(x)=-,若F(x)的圖象與G(x)的圖象的交點分別為(x1,y1),(x2,y2),…,(xm,ym),則(xi+yi)=________.
解析:∵f (x)是定義在R上的偶函數(shù),∴g(x)=x3f (x)是定義在R上的奇函數(shù),其圖象關于原點中心對稱,∴函數(shù)F(x)=(x+2)3f (x+2)-17=g(x+2)-17的圖象關于點(-2,-17)中心對稱.又函數(shù)G(x)=-=-17的圖象也關于點(-2,-17)中心對稱,∴F(x)和G(x)的圖象的交點也關于點(-2,-17)中心對稱,∴x1+x2+…+xm=(-2)2=-2m,y1+y2+…+ym=(-17)2=-17m,∴(xi+yi)=(x1+x2+…+xm)+(y1+y2+…+ym)=-19m.
答案:-19m
重難增分(二)
新定義下的函數(shù)問題
[典例細解]
我們將具有性質(zhì)f =-f (x)的函數(shù),稱為滿足“倒負”變換的函數(shù).給出下列函數(shù):①f (x)=ln;②f (x)=;③f (x)=
其中滿足“倒負”變換的函數(shù)是( )
A.①② B.①③
C.②③ D.①②③
[解析] 對于①,因為f =ln=ln≠-f (x),所以不滿足“倒負”變換;
對于②,因為f ===-f (x),所以滿足“倒負”變換;
對于③,因為f =即f =所以f =-f (x),故滿足“倒負”變換.綜上可知,選C.
[答案] C
[啟思維] 本題是在現(xiàn)有函數(shù)的圖象與性質(zhì)的基礎上定義的一種新的函數(shù)性質(zhì),考查在新情境下,靈活運用有關函數(shù)知識求解“新定義”類數(shù)學問題的能力.求解本題的關鍵是先準確寫出f 的表達式,并加以整理,再具體考慮f 與-f (x)是否相等.
設函數(shù)f (x)的定義域為D,若f (x)滿足條件:存在[a,b]?D(a0),
則方程m2-m+t=0有兩個不等的實根,且兩根都大于0,所以解得00,∴f (x)=ex-1+x-2是增函數(shù).又f (1)=0,∴函數(shù)f (x)的零點為x=1,∴α=1,∴|1-β|≤1,∴0≤β≤2,∴函數(shù)g(x)=x2-ax-a+3在區(qū)間[0,2]上有零點.由g(x)=0,得a=(0≤x≤2),即a==(x+1)+-2(0≤x≤2),設x+1=t(1≤t≤3),則a=t+-2(1≤t≤3),令h(t)=t+-2(1≤t≤3),易知h(t)在區(qū)間[1,2)上是減函數(shù),在區(qū)間(2,3]上是增函數(shù),∴2≤h(t)≤3,即2≤a≤3,故選D.
3.對任意實數(shù)a,b定義運算“?”:a?b=設f (x)=(x2-1)?(4+x),若函數(shù)y=f (x)+k的圖象與x軸恰有三個不同的交點,則實數(shù)k的取值范圍是( )
A.(-2,1) B.[0,1]
C.[-2,0) D.[-2,1)
解析:選D 當x2-1≥4+x+1,即x≤-2或x≥3時,f (x)=4+x;當x2-1<4+x+1,即-20時,y=2-|x|=|x|=x,函數(shù)y=x在區(qū)間(0,+∞)上是減函數(shù).故選D.
2.(2018貴陽模擬)若函數(shù)f (x)是定義在R上的奇函數(shù),當x≥0時,f (x)=log2(x+2)-1,則f (-6)=( )
A.2 B.4
C.-2 D.-4
解析:選C 根據(jù)題意得f (-6)=-f (6)=1-log2(6+2)=1-log28=-2.故選C.
3.(2018長春質(zhì)檢)已知函數(shù)f (x)=則函數(shù)f (x)的值域為( )
A.[-1,+∞) B.(-1,+∞)
C. D.R
解析:選B 法一:當x<-1時,f (x)=x2-2∈(-1,+∞);當x≥-1時,f (x)=2x-1∈,綜上可知,函數(shù)f (x)的值域為(-1,+∞).故選B.
法二:作出分段函數(shù)f (x)的圖象(圖略)可知,該函數(shù)的值域為(-1,+∞),故選B.
4.(2018陜西質(zhì)檢)設x∈R,定義符號函數(shù)sgn x=則函數(shù)f (x)=|x|sgn x的圖象大致是( )
解析:選C 由符號函數(shù)解析式和絕對值運算,可得f (x)=x,選C.
5.(2018濮陽二模)若f (x)=是奇函數(shù),則f (g(-2))的值為( )
A. B.-
C.1 D.-1
解析:選C ∵f (x)=是奇函數(shù),
∴x<0時,g(x)=-+3,
∴g(-2)=-+3=-1,
f (g(-2))=f (-1)=-f (1)=1.故選C.
6.(2018葫蘆島一模)設偶函數(shù)f (x)對任意x∈R,都有f (x+3)=-,且當x∈[-3,-2]時,f (x)=4x,則f (107.5)=( )
A.10 B.
C.-10 D.-
解析:選B 因為f (x+3)=-,所以f (x+6)=-=-=f (x),所以函數(shù)f (x)是以6為周期的函數(shù),f (107.5)=f (617+5.5)=f (5.5)=-=-=-=.故選B.
7.(2019屆高三合肥調(diào)研)函數(shù)f (x)=(ex-e-x)的圖象大致是( )
解析:選D 因為f (x)=(ex-e-x)(x≠0),所以f (-x)=(e-x-ex)=(ex-e-x)=f (x),所以f (x)是偶函數(shù),排除選項A、C;因為函數(shù)f (x)在(0,+∞)上是增函數(shù),所以排除選項B,故選D.
8.點P在邊長為1的正方形ABCD的邊上運動,M是CD的中點,則當P沿ABCM運動時,點P經(jīng)過的路程x與△APM的面積y的函數(shù)y=f (x)的圖象的形狀大致是圖中的( )
解析:選A 根據(jù)題意得
f (x)=
畫出分段函數(shù)圖象可知A正確.
9.(2018河北“五個一名校聯(lián)盟”模擬)已知奇函數(shù)f (x)滿足f (x+1)=f (1-x),若當x∈(-1,1)時,f (x)=lg,且f (2 018-a)=1,則實數(shù)a的值可以是( )
A. B.
C.- D.-
解析:選A ∵f (x+1)=f (1-x),∴f (x)=f (2-x).又函數(shù)f (x)為奇函數(shù),∴f (-x)=-f (x),∴f (-x)=-f (2-x),∴f (2+x)=-f (x),∴f (x+4)=-f (x+2)=f (x),∴函數(shù)f (x)為周期函數(shù),且周期為4.當x∈(-1,1)時,令f (x)=lg=1,得x=,又f (2 018-a)=f (2-a)=f (a),∴a可以是.
10.已知函數(shù)f (x)=則f (1)+f (2)+f (3)+…+f (2 018)=( )
A.2 018 B.1 513
C.1 009 D.
解析:選D ∵函數(shù)f (x)=
∴f (1)=f (-1)=2-1,f (2)=f (0)=20,f (3)=f (1)=2-1,…,
∴f (1)+f (2)+f (3)+…+f (2 018)=1 009f (-1)+1 009f (0)=1 0092-1+1 00920=.故選D.
11.(2018郴州二模)已知函數(shù)f (x)=ex-,其中e是自然對數(shù)的底數(shù).則關于x的不等式f (2x-1)+f (-x-1)>0的解集為( )
A.∪(2,+∞) B.(2,+∞)
C.∪(2,+∞) D.(-∞,2)
解析:選B ∵函數(shù)f (x)=ex-=ex-e-x滿足f (-x)=-f (x),
∴f (x)為奇函數(shù)且是單調(diào)遞增函數(shù),
關于x的不等式f (2x-1)+f (-x-1)>0,
即為f (2x-1)>f (x+1),
∴2x-1>x+1,
解得x>2,故選B.
12.(2018陜西二模)已知函數(shù)f (x)=ex+2(x<0)與g(x)=ln(x+a)+2的圖象上存在關于y軸對稱的點,則a的取值范圍是( )
A. B.(-∞,e)
C. D.
解析:選B 由題意知,方程f (-x)-g(x)=0在(0,+∞)上有解,
即e-x+2-ln(x+a)-2=0在(0,+∞)上有解,
即函數(shù)y=e-x的圖象與y=ln(x+a)
的圖象在(0,+∞)上有交點,
函數(shù)y=ln(x+a)的圖象是由函數(shù)y=ln x的圖象向左平移a個單位得到的,當y=ln x向左平移且平移到過點(0,1)后開始,兩函數(shù)的圖象有交點,
把點(0,1)代入y=ln(x+a)得,1=ln a,
∴a=e,∴a3時滿足f (x)=-f (x-3)=f (x-6),函數(shù)f (x)的周期為6.
∴f (2 009)=f (3346+5)=f (5)=f (-1).
∵當x≤0時f (x)=log2(1-x),∴f (-1)=1,
∴f (2 009)=f (-1)=1.
答案:1
16.已知函數(shù)f (x)=e|x|,函數(shù)g(x)=對任意的x∈[1,m](m>1),都有f (x-2)≤g(x),則m的取值范圍是__________.
解析:作出函數(shù)y=h(x)=e|x-2|和y=g(x)的圖象,如圖所示,由圖可知當x=1時,h(1)=g(1),又當x=4時,h(4)=e24時,由ex-2≤4e5-x,得e2x-7≤4,即2x-7≤ln 4,解得x≤+ln 2,又m>1,∴11),若對于任意a,b,c∈R,都有f (a)+f (b)>f (c)成立,則實數(shù)m的取值范圍是________.
解析:因為f (x)==1+,
所以當m>1時,函數(shù)f (x)在R上是減函數(shù),函數(shù)f (x)的值域為(1,m),
所以f (a)+f (b)>2,f (c)f (c)對任意的a,b,c∈R恒成立,所以m≤2,所以1f (c)=1,滿足題意.
當m<1時,函數(shù)f (x)在R上是增函數(shù),函數(shù)f (x)的值域為(m,1),
所以f (a)+f (b)>2m,f (c)<1,所以2m≥1,
所以m≥,所以≤m<1.
綜上可知,≤m≤2,故所求實數(shù)m的取值范圍是.
答案:
20.已知函數(shù)f (x)=若f (x)的值域為R,則實數(shù)a的取值范圍是________.
解析:依題意,當x≥1時,f (x)=1+log2x單調(diào)遞增,f (x)=1+log2x在區(qū)間[1,+∞)上的值域是[1,+∞).因此,要使函數(shù)f (x)的值域是R,則需函數(shù)f (x)在(-∞,1)上的值域M?(-∞,1).
①當a-1<0,即a<1時,函數(shù)f (x)在(-∞,1)上單調(diào)遞減,函數(shù)f (x)在(-∞,1)上的值域M=(-a+3,+∞),顯然此時不能滿足M?(-∞,1),因此a<1不滿足題意;
②當a-1=0,即a=1時,函數(shù)f (x)在(-∞,1)上的值域M={2},此時不能滿足M?(-∞,1),因此a=1不滿足題意;
③當a-1>0,即a>1時,函數(shù)f (x)在(-∞,1)上單調(diào)遞增,函數(shù)f (x)在(-∞,1)上的值域M=(-∞,-a+3),由M?(-∞,1)得解得12的解集為( )
A.(2,+∞) B.∪(2,+∞)
C.∪(,+∞) D.(,+∞)
解析:選B 因為f (x)是R上的偶函數(shù),且在(-∞,0]上是減函數(shù),所以f (x)在[0,+∞)上是增函數(shù).因為f (1)=2,所以f (-1)=2,所以f (log2x)>2?f (|log2x|)>f (1)?|log2x|>1?log2x>1或log2x<-1?x>2或0b>c B.b>a>c
C.b>c>a D.c>a>b
解析:選B 法一:因為函數(shù)f (x)是偶函數(shù),f (x+1)是奇函數(shù),所以f (-x)=f (x),f (-x+1)=-f (x+1),所以f (x-1)=-f (x+1),所以f (x)=-f (x+2),所以f (x)=f (x+4),所以a=f =f =f ,b=-f =f ,c=f =f ,又對于任意x1,x2∈[0,1],且x1≠x2,都有(x1-x2)[f (x1)-f (x2)]<0,所以f (x)在[0,1]上是減函數(shù),因為<<,所以b>a>c,故選B.
法二:因為函數(shù)f (x)是偶函數(shù),f (x+1)是奇函數(shù),且對于任意x1,x2∈[0,1],且x1≠x2,都有(x1-x2)[f (x1)-f (x2)]<0,即f (x)在[0,1]上是減函數(shù),不妨取f (x)=cosx,則a=f =cos=cos,b=-f =-cos=cos,c=f =cos=cos,因為函數(shù)y=cos x在[0,1]上是減函數(shù),且<<<1,所以b>a>c,故選B.
3.(2018全國卷Ⅰ)設函數(shù)f (x)=則滿足f (x+1)0時,f (x+1)=1,f (2x)=1,不合題意.
綜上,不等式f (x+1)0.給出下列命題:①f (221)=-1;②函數(shù)y=f (x)圖象的一條對稱軸方程為x=-4;③函數(shù)y=f (x)在[-6,-4]上為減函數(shù);④方程f (x)=0在[-6,6]上有4個根.
其中正確的命題個數(shù)為( )
A.1 B.2
C.3 D.4
解析:選D 令x=-2,由f (x+4)=f (x)+f (2)得f (-2)=0.因為函數(shù)y=f (x)是R上的偶函數(shù),所以f (2)=f (-2)=0,所以f (x+4)=f (x),即函數(shù)y=f (x)是以4為周期的周期函數(shù),所以f (221)=f (554+1)=f (1).因為f (3)=-1,所以f (-3)=f (1)=-1,從而f (221)=-1,①正確.因為函數(shù)圖象關于y軸對稱,函數(shù)的周期為4,所以函數(shù)y=f (x)圖象的一條對稱軸方程為x=-4,②正確.因為當x1,x2∈[0,2],且x1≠x2時,都有>0,設x1f (sin x-1-m)恒成立,則實數(shù)m的取值范圍為______________.
解析:因為f (x-2)是偶函數(shù),
所以函數(shù)f (x)的圖象關于x=-2對稱.
又f (x)在(-∞,-2)上為增函數(shù),
則f (x)在(-2,+∞)上為減函數(shù),
所以不等式f (2sin x-2)>f (sin x-1-m)恒成立等價于|2sin x-2+2|<|sin x-1-m+2|,
即|2sin x|<|sin x+1-m|,兩邊同時平方,
得3sin2x-2(1-m)sin x-(1-m)2<0,
即(3sin x+1-m)(sin x-1+m)<0,
即或
即或
即或
即m<-2或m>4,
故實數(shù)m的取值范圍為(-∞,-2)∪(4,+∞).
答案:(-∞,-2)∪(4,+∞)
鏈接地址:http://www.hcyjhs8.com/p-6130465.html