秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(cè)(十二)直線與圓 理(重點(diǎn)生含解析).doc

  • 資源ID:6151744       資源大?。?span id="mzebxcnn0" class="font-tahoma">90KB        全文頁數(shù):9頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。

(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(cè)(十二)直線與圓 理(重點(diǎn)生含解析).doc

專題跟蹤檢測(cè)(十二) 直線與圓 一、全練保分考法——保大分 1.過點(diǎn)(3,1)作圓(x-1)2+y2=r2的切線有且只有一條,則該切線的方程為(  ) A.2x+y-5=0       B.2x+y-7=0 C.x-2y-5=0 D.x-2y-7=0 解析:選B ∵過點(diǎn)(3,1)作圓(x-1)2+y2=r2的切線有且只有一條, ∴點(diǎn)(3,1)在圓(x-1)2+y2=r2上, ∵圓心與切點(diǎn)連線的斜率k==, ∴切線的斜率為-2, 則圓的切線方程為y-1=-2(x-3), 即2x+y-7=0. 2.圓心在直線x+2y=0上的圓C與y軸的負(fù)半軸相切,圓C截x軸所得的弦長為2,則圓C的標(biāo)準(zhǔn)方程為(  ) A.(x-2)2+(y+)2=8 B.(x-)2+(y+2)2=8 C.(x-2)2+(y+)2=8 D.(x-)2+(y+2)2=8 解析:選A 法一:設(shè)圓心為(r>0),半徑為r.由勾股定理()2+2=r2,解得r=2,∴圓心為(2,-),∴圓C的標(biāo)準(zhǔn)方程為(x-2)2+(y+)2=8. 法二:四個(gè)圓的圓心分別為(2,-),(,-2),(2,-),(,-2),將它們逐一代入x+2y=0,只有A選項(xiàng)滿足. 3.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2.則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是(  ) A.內(nèi)切 B.相交 C.外切 D.相離 解析:選B 由題意知圓M的圓心為(0,a),半徑R=a,因?yàn)閳AM截直線x+y=0所得線段的長度為2,所以圓心M到直線x+y=0的距離d==(a>0),解得a=2,即圓M的圓心為(0,2),又知圓N的圓心為(1,1),半徑r=1,所以|MN|=,則R-r<<R+r,所以兩圓的位置關(guān)系為相交. 4.已知直線l:x-y+6=0與圓x2+y2=12交于A,B兩點(diǎn),過A,B分別作l的垂線與x軸交于C,D兩點(diǎn).則|CD|=(  ) A.2 B.4 C.6 D.4 解析:選D 法一:因?yàn)閳A心(0,0)到直線x-y+6=0的距離d==3,所以|AB|=2=2,過C作CE⊥BD于E,因?yàn)橹本€l的傾斜角為30, 所以|CD|====4. 法二:由x-y+6=0與x2+y2=12聯(lián)立解得A(-3,),B(0,2),∴AC的方程為y-=-(x+3),BD的方程為y-2=-x,可得C(-2,0),D(2,0),所以|CD|=4. 5.已知A(0,3),B,P為圓C:x2+y2=2x上的任意一點(diǎn),則△ABP面積的最大值為(  ) A. B. C.2 D. 解析:選A 圓C的方程可化為(x-1)2+y2=1, 因?yàn)锳(0,3),B, 所以|AB|==3,直線AB的方程為x+y=3, 所以圓心(1,0)到直線AB的距離d==.又圓C的半徑為1,所以圓C上的點(diǎn)到直線AB的最大距離為+1,故△ABP面積的最大值為Smax=(+1)3=. 6.已知等邊三角形OAB的三個(gè)頂點(diǎn)都在拋物線y2=2x上,其中O為坐標(biāo)原點(diǎn),設(shè)圓C是△OAB的外接圓(點(diǎn)C為圓心),則圓C的方程為(  ) A.(x-4)2+y2=16 B.(x+4)2+y2=16 C.x2+(y-4)2=16 D.x2+(y+4)2=16 解析:選A 法一:設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,,由題設(shè)知== , 解得y=y(tǒng)=12,所以A(6,2),B(6,-2)或A(6,-2),B(6,2). 設(shè)圓心C的坐標(biāo)為(r,0)(r>0),則r=6=4, 所以圓C的方程為(x-4)2+y2=16. 法二:設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2)(x1>0,x2>0),由題設(shè)知x+y=x+y. 又y=2x1,y=2x2,故x+2x1=x+2x2, 即(x1-x2)(x1+x2+2)=0, 由x1>0,x2>0,可知x1=x2,故A,B兩點(diǎn)關(guān)于x軸對(duì)稱,所以圓心C在x軸上. 設(shè)點(diǎn)C的坐標(biāo)為(r,0)(r>0),則點(diǎn)A的坐標(biāo)為,于是2=2r,解得r=4,所以圓C的方程為(x-4)2+y2=16. 7.設(shè)M,N分別為圓O1:x2+y2-12y+34=0和圓O2:(x-2)2+y2=4上的動(dòng)點(diǎn),則M,N兩點(diǎn)間的距離的取值范圍是________. 解析:圓O1的方程可化為x2+(y-6)2=2,其圓心為O1(0,6),半徑r1=.圓O2的圓心O2(2,0),半徑r2=2,則|O1O2|==2,則|MN|max=2+2+,|MN|min=2-2-,故M,N兩點(diǎn)間的距離的取值范圍是[2-2-,2+2+]. 答案:[2-2-,2+2+] 8.過點(diǎn)P(-3,1),Q(a,0)的光線經(jīng)x軸反射后與圓x2+y2=1相切,則a的值為________. 解析:點(diǎn)P(-3,1)關(guān)于x軸對(duì)稱的點(diǎn)為P′(-3,-1), 所以直線P′Q的方程為x-(a+3)y-a=0, 由題意得直線P′Q與圓x2+y2=1相切, 所以=1, 解得a=-. 答案:- 9.已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長為2,則過圓心且與直線l垂直的直線的方程為________________. 解析:由題意,設(shè)所求的直線方程為x+y+m=0,圓心坐標(biāo)為(a,0)(a>0), 則由題意知2+2=(a-1)2, 解得a=3或-1(舍去), 故圓心坐標(biāo)為(3,0), 因?yàn)閳A心(3,0)在所求的直線上, 所以3+0+m=0, 解得m=-3, 故所求的直線方程為x+y-3=0. 答案:x+y-3=0 10.(2018全國卷Ⅱ)設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過F且斜率為k(k>0)的直線l與C交于A,B兩點(diǎn),|AB|=8. (1)求l的方程; (2)求過點(diǎn)A,B且與C的準(zhǔn)線相切的圓的方程. 解:(1)由題意得F(1,0),l的方程為y=k(x-1)(k>0). 設(shè)A(x1,y1),B(x2,y2), 由得k2x2-(2k2+4)x+k2=0. Δ=16k2+16>0,故x1+x2=. 所以|AB|=|AF|+|BF| =(x1+1)+(x2+1)=. 由題設(shè)知=8, 解得k=1或k=-1(舍去). 因此l的方程為y=x-1. (2)由(1)得AB的中點(diǎn)坐標(biāo)為(3,2), 所以AB的垂直平分線方程為y-2=-(x-3), 即y=-x+5. 設(shè)所求圓的圓心坐標(biāo)為(x0,y0), 則 解得或 因此所求圓的方程為(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144. 11.(2018成都模擬)在平面直角坐標(biāo)系xOy中,曲線Г:y=x2-mx+2m(m∈R)與x軸交于不同的兩點(diǎn)A,B,曲線Г與y軸交于點(diǎn)C. (1)是否存在以AB為直徑的圓過點(diǎn)C?若存在,求出該圓的方程;若不存在,請(qǐng)說明理由. (2)求證:過A,B,C三點(diǎn)的圓過定點(diǎn). 解:由曲線Г:y=x2-mx+2m(m∈R), 令y=0,得x2-mx+2m=0.設(shè)A(x1,0),B(x2,0), 則可得Δ=m2-8m>0, 解得m>8或m<0,x1+x2=m,x1x2=2m. 令x=0,得y=2m,即C(0,2m). (1)若存在以AB為直徑的圓過點(diǎn)C,則=0, 得x1x2+4m2=0, 即2m+4m2=0, 所以m=0(舍去)或m=-. 所以m=-, 此時(shí)C(0,-1),AB的中點(diǎn)M即圓心, 半徑r=|CM|=, 故所求圓的方程為2+y2=. (2)證明:設(shè)過A,B兩點(diǎn)的圓的方程為 x2+y2-mx+Ey+2m=0, 將點(diǎn)C(0,2m)代入可得E=-1-2m, 所以過A,B,C三點(diǎn)的圓的方程為 x2+y2-mx-(1+2m)y+2m=0, 整理得x2+y2-y-m(x+2y-2)=0. 令可得或 故過A,B,C三點(diǎn)的圓過定點(diǎn)(0,1)和. 12.(2019屆高三廣州調(diào)研)在平面直角坐標(biāo)系xOy中,已知圓C與y軸相切,且過點(diǎn)M(1,),N(1,-). (1)求圓C的方程; (2)已知直線l與圓C交于A,B兩點(diǎn),且直線OA與直線OB的斜率之積為-2.求證:直線l恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo). 解:(1)因?yàn)閳AC過點(diǎn)M(1,),N(1,-), 所以圓心C在線段MN的垂直平分線上,即在x軸上, 故設(shè)圓心為C(a,0),易知a>0, 又圓C與y軸相切,所以圓C的半徑r=a, 所以圓C的方程為(x-a)2+y2=a2. 因?yàn)辄c(diǎn)M(1,)在圓C上, 所以(1-a)2+()2=a2,解得a=2. 所以圓C的方程為(x-2)2+y2=4. (2)證明:記直線OA的斜率為k(k≠0),則其方程為y=kx. 聯(lián)立消去y,得(k2+1)x2-4x=0, 解得x1=0,x2=. 所以A. 由kkOB=-2,得kOB=-, 直線OB的方程為y=-x, 在點(diǎn)A的坐標(biāo)中用-代換k,得B. 當(dāng)直線l的斜率不存在時(shí),=,得k2=2,此時(shí)直線l的方程為x=. 當(dāng)直線l的斜率存在時(shí),≠,即k2≠2, 則直線l的斜率為 ===. 故直線l的方程為y-=, 即y=, 所以直線l過定點(diǎn). 綜上,直線l恒過定點(diǎn),定點(diǎn)坐標(biāo)為. 二、強(qiáng)化壓軸考法——拉開分 1.已知圓C:x2+y2=1,點(diǎn)P(x0,y0)在直線l:3x+2y-4=0上,若在圓C上總存在兩個(gè)不同的點(diǎn)A,B,使+=,則x0的取值范圍是(  ) A. B. C. D. 解析:選C 如圖,∵+=, ∴OP與AB互相垂直平分, ∴圓心到直線AB的距離 <1, ∴x+y<4.?、? 又3x0+2y0-4=0, ∴y0=2-x0, 代入①得x+2<4, 解得0<x0<. ∴實(shí)數(shù)x0的取值范圍是. 2.已知直線y=x+m和圓x2+y2=1交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若=,則實(shí)數(shù)m的值為(  ) A.1 B. C. D. 解析:選C 設(shè)A(x1,y1),B(x2,y2),則=(-x1,-y1),=(x2-x1,y2-y1),由消去y,整理得,2x2+2mx+m2-1=0,故Δ=4m2-8(m2-1)=8-4m2>0,-<m<,x1+x2=-m,x1x2=,y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,又=-x1x2-y1y2+x+y=,故x1x2+y1y2=-,故2x1x2+m(x1+x2)+m2=-,即m2-1-m2+m2=-,得m2=,m=. 3.(2018荊州模擬)過點(diǎn)A(1,)的直線l將圓C:(x-2)2+y2=4分成兩段弧,當(dāng)劣弧所對(duì)的圓心角最小時(shí),直線l的斜率為________. 解析:易知點(diǎn)A(1,)在圓(x-2)2+y2=4的內(nèi)部,圓心C的坐標(biāo)為(2,0),要使劣弧所對(duì)的圓心角最小,只能是直線l⊥CA,所以kl=-=-=. 答案: 4.已知圓O:x2+y2=1與x軸負(fù)半軸的交點(diǎn)為A,P為直線3x+4y-a=0上一點(diǎn),過P作圓O的切線,切點(diǎn)為T,若|PA|=2|PT|,則實(shí)數(shù)a的最大值為________. 解析:由題意知A(-1,0),設(shè)P(x,y),由|PA|=2|PT|可得(x+1)2+y2=4(x2+y2-1),化簡(jiǎn)得2+y2=.由3x+4y-a=0與圓2+y2=有公共點(diǎn)P,所以圓心到直線3x+4y-a=0的距離d=≤,解得-≤a≤,所以實(shí)數(shù)a的最大值為. 答案: 5.已知圓O:x2+y2=1,圓M:(x-a)2+(y-a+4)2=1.若圓M上存在點(diǎn)P,過點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,使得∠APB=60,則實(shí)數(shù)a的取值范圍為_________. 解析:圓O的半徑為1,圓M上存在點(diǎn)P,過點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B, 使得∠APB=60,則∠APO=30. 在Rt△PAO中,|PO|=2, 又圓M的半徑為1,圓心坐標(biāo)為M(a,a-4), ∴|MO|-1≤|PO|≤|MO|+1, ∵|MO|=, ∴ -1≤2≤ +1, 解得2-≤a≤2+. ∴實(shí)數(shù)a的取值范圍為. 答案: 6.(2018廣州高中綜合測(cè)試)已知定點(diǎn)M(1,0)和N(2,0),動(dòng)點(diǎn)P滿足|PN|=|PM|. (1)求動(dòng)點(diǎn)P的軌跡C的方程; (2)若A,B為(1)中軌跡C上兩個(gè)不同的點(diǎn),O為坐標(biāo)原點(diǎn).設(shè)直線OA,OB,AB的斜率分別為k1,k2,k.當(dāng)k1k2=3時(shí),求k的取值范圍. 解:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y), 因?yàn)镸(1,0),N(2,0),|PN|=|PM|, 所以 =. 整理得,x2+y2=2. 所以動(dòng)點(diǎn)P的軌跡C的方程為x2+y2=2. (2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+ B. 由消去y,整理得(1+k2)x2+2bkx+b2-2=0.(*) 由Δ=(2bk)2-4(1+k2)(b2-2)>0,得b2<2+2k2.① 由根與系數(shù)的關(guān)系,得x1+x2=-,x1x2=.② 由k1k2===3, 得(kx1+b)(kx2+b)=3x1x2, 即(k2-3)x1x2+bk(x1+x2)+b2=0. ③ 將②代入③,整理得b2=3-k2. ④ 由④得b2=3-k2≥0,解得-≤k≤. ⑤ 由①和④,解得k<-或k>. ⑥ 要使k1,k2,k有意義,則x1≠0,x2≠0, 所以0不是方程(*)的根, 所以b2-2≠0,即k≠1且k≠-1. ⑦ 由⑤⑥⑦,得k的取值范圍為 [-,-1)∪∪∪(1, ].

注意事項(xiàng)

本文((通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(cè)(十二)直線與圓 理(重點(diǎn)生含解析).doc)為本站會(huì)員(sh****n)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!