(通用版)2019版高考數(shù)學二輪復習 專題檢測(十八) 坐標系與參數(shù)方程 理(普通生含解析)(選修4-4).doc
《(通用版)2019版高考數(shù)學二輪復習 專題檢測(十八) 坐標系與參數(shù)方程 理(普通生含解析)(選修4-4).doc》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學二輪復習 專題檢測(十八) 坐標系與參數(shù)方程 理(普通生含解析)(選修4-4).doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題檢測(十八) 坐標系與參數(shù)方程 1.在平面直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,半圓C的極坐標方程為ρ=4cos θ,θ∈. (1)求半圓C的參數(shù)方程; (2)若半圓C與圓D:(x-5)2+(y-)2=m(m是常數(shù),m>0)相切,試求切點的直角 坐標. 解:(1)半圓C的普通方程為(x-2)2+y2=4(0≤y≤2), 則半圓C的參數(shù)方程為(t為參數(shù),0≤t≤π). (2)C,D的圓心坐標分別為(2,0),(5,), 于是直線CD的斜率k==. 由于切點必在兩個圓心的連線上, 故切點對應(yīng)的參數(shù)t滿足tan t=,t=, 所以切點的直角坐標為,即(2+,1). 2.(2018貴陽摸底考試)曲線C的參數(shù)方程為(φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos=. (1)寫出C的普通方程,并用(α為直線的傾斜角,t為參數(shù))的形式寫出直線l的一個參數(shù)方程; (2)l與C是否相交?若相交,求出兩交點的距離,若不相交,請說明理由. 解:(1)C的普通方程為+y2=1, 由ρcos=得x-y-2=0, 則直線l的傾斜角為, 又直線l過點(2,0), 得直線l的一個參數(shù)方程為(t為參數(shù)). (2)將l的參數(shù)方程代入C的普通方程得 5t2+4t=0,解得t1=0,t2=-, 顯然l與C有兩個交點, 分別記為A,B,且|AB|=|t1-t2|=. 3.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρcos=3. (1)寫出C1的普通方程和C2的直角坐標方程. (2)設(shè)點P在C1上,點Q在C2上,求|PQ|的最小值及此時點P的直角坐標. 解:(1)曲線C1的參數(shù)方程為(α為參數(shù)),普通方程為x2+=1, 曲線C2的極坐標方程為ρcos=3, 即ρcos θ+ρsin θ-6=0,直角坐標方程為x+y-6=0. (2)設(shè)P(cos α,sin α),則|PQ|的最小值為P到x+y-6=0距離, 即=, 當且僅當α=2kπ+(k∈Z)時,|PQ|取得最小值2, 此時P. 4.(2018貴陽適應(yīng)性考試)在平面直角坐標系xOy中,曲線C:(α為參數(shù)),在以原點O為極點,x軸的正半軸為極軸的極坐標系中,直線l的極坐標方程為 ρcos=-1. (1)求曲線C的普通方程和直線l的直角坐標方程; (2)過點M(-1,0)且與直線l平行的直線l1交曲線C于A,B兩點,求點M到A,B兩點的距離之和. 解:(1)曲線C的普通方程為+y2=1, 由ρcos=-1,得ρcos θ-ρsin θ=-2, 所以直線l的直角坐標方程為x-y+2=0. (2)直線l1的參數(shù)方程為(t為參數(shù)),將其代入+y2=1中,化簡得2t2-t-2=0, 設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1,t2, 則t1+t2=,t1t2=-1, 所以|MA|+|MB|=|t1|+|t2|=|t1-t2|===. 5.(2018福州四校聯(lián)考)在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為y=x.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. (1)求曲線C1和直線C2的極坐標方程; (2)若直線C2與曲線C1交于A,B兩點,求+. 解:(1)由曲線C1的參數(shù)方程為(α為參數(shù)),得曲線C1的普通方程為 (x-2)2+(y-2)2=1, 則C1的極坐標方程為ρ2-4ρcos θ-4ρsin θ+7=0, 由于直線C2過原點,且傾斜角為,故其極坐標方程為θ=(ρ∈R)(tan θ=). (2)由得ρ2-(2+2)ρ+7=0, 設(shè)A,B對應(yīng)的極徑分別為ρ1,ρ2,則ρ1+ρ2=2+2,ρ1ρ2=7, ∴+===. 6.極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,x軸的正半軸為極軸建立極坐標系.已知曲線C1的極坐標方程為ρ=4cos θ,曲線C2的參數(shù)方程為(t為參數(shù),0≤α<π),射線θ=φ,θ=φ+,θ=φ-與曲線C1交于(不包括極點O)三點A,B,C. (1)求證:|OB|+|OC|=|OA|; (2)當φ=時,B,C兩點在曲線C2上,求m與α的值. 解:(1)證明:設(shè)點A,B,C的極坐標分別為(ρ1,φ),,, 因為點A,B,C在曲線C1上, 所以ρ1=4cos φ,ρ2=4cos,ρ3=4cos, 所以|OB|+|OC|=ρ2+ρ3=4cos+4cos=4cos φ=ρ1, 故|OB|+|OC|=|OA|. (2)由曲線C2的方程知曲線C2是經(jīng)過定點(m,0)且傾斜角為α的直線. 當φ=時,B,C兩點的極坐標分別為,, 化為直角坐標為B(1,),C(3,-), 所以tan α==-,又0≤α<π,所以α=. 故曲線C2的方程為y=-(x-2),易知曲線C2恒過點(2,0),即m=2. 7.在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),其中0≤α<π,在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C1:ρ=4cos θ.直線l與曲線C1相切. (1)將曲線C1的極坐標方程化為直角坐標方程,并求α的值. (2)已知點Q(2,0),直線l與曲線C2:x2+=1交于A,B兩點,求△ABQ的面積. 解:(1)曲線C1:ρ=4cos θ,即ρ2=4ρcos θ,化為直角坐標方程為x2+y2=4x,即C1:(x-2)2+y2=4,可得圓心(2,0),半徑r=2, 直線l的參數(shù)方程為(t為參數(shù)),其中0≤α<π,由題意l與C1相切,可得普通方程為y-=k(x-1),k=tan α,0≤α<π且α≠, 因為直線l與曲線C1相切,所以=2, 所以k=,所以α=. (2)直線l的方程為y=x+, 代入曲線C2:x2+=1,整理可得10x2+4x-5=0, 設(shè)A(x1,y1),B(x2,y2), 則x1+x2=-,x1x2=-, 所以|AB|==, Q到直線的距離d==2, 所以△ABQ的面積S=2=. 8.已知直線L的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ=. (1)求直線L的極坐標方程和曲線C的直角坐標方程; (2)過曲線C上任意一點P作與直線L夾角為的直線l,設(shè)直線l與直線L的交點為A,求|PA|的最大值. 解:(1)由(t為參數(shù)),得L的普通方程為2x+y-6=0, 令x=ρcos θ,y=ρsin θ, 得直線L的極坐標方程為2ρcos θ+ρsin θ-6=0, 由曲線C的極坐標方程,知ρ2+3ρ2cos2θ=4, 所以曲線C的直角坐標方程為x2+=1. (2)由(1),知直線L的普通方程為2x+y-6=0, 設(shè)曲線C上任意一點P(cos α,2sin α), 則點P到直線L的距離d=. 由題意得|PA|==, 所以當sin=-1時,|PA|取得最大值,最大值為.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 通用版2019版高考數(shù)學二輪復習 專題檢測十八 坐標系與參數(shù)方程 理普通生,含解析選修4-4 通用版 2019 高考 數(shù)學 二輪 復習 專題 檢測 十八 坐標系 參數(shù) 方程 普通 解析
鏈接地址:http://www.hcyjhs8.com/p-6197237.html