秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

新編高考數學文二輪復習教師用書:第1部分 重點強化專題 專題1 突破點3 平面向量 Word版含答案

上傳人:痛*** 文檔編號:62012313 上傳時間:2022-03-13 格式:DOC 頁數:8 大小:287.50KB
收藏 版權申訴 舉報 下載
新編高考數學文二輪復習教師用書:第1部分 重點強化專題 專題1 突破點3 平面向量 Word版含答案_第1頁
第1頁 / 共8頁
新編高考數學文二輪復習教師用書:第1部分 重點強化專題 專題1 突破點3 平面向量 Word版含答案_第2頁
第2頁 / 共8頁
新編高考數學文二輪復習教師用書:第1部分 重點強化專題 專題1 突破點3 平面向量 Word版含答案_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數學文二輪復習教師用書:第1部分 重點強化專題 專題1 突破點3 平面向量 Word版含答案》由會員分享,可在線閱讀,更多相關《新編高考數學文二輪復習教師用書:第1部分 重點強化專題 專題1 突破點3 平面向量 Word版含答案(8頁珍藏版)》請在裝配圖網上搜索。

1、 突破點3 平面向量 [核心知識提煉] 提煉1 平面向量共線、垂直的兩個充要條件 若a=(x1,y1),b=(x2,y2),則: (1)a∥b?a=λb(b≠0)?x1y2-x2y1=0. (2)a⊥b?a·b=0?x1x2+y1y2=0. 提煉2 數量積常見的三種應用 已知兩個非零向量a=(x1,y1),b=(x2,y2),則 (1)證明向量垂直:a⊥b?a·b=0?x1x2+y1y2=0. (2)求向量的長度:|a|==. (3)求向量的夾角:cos〈a,b〉==. 提煉3 平面向量解題中應熟知的常用結論 (1)A,B,C三點共線的充要條件是存在實數λ,μ

2、,有=λ+μ,且λ+μ=1. (2)C是線段AB中點的充要條件是=(+). (3)G是△ABC的重心的充要條件為++=0,若△ABC的三個頂點坐標分別為A(x1,y1),B(x2,y2),C(x3,y3),則△ABC的重心坐標為. (4)·=·=·?P為△ABC的垂心. (5)非零向量a,b垂直的充要條件:a⊥b?a·b=0?|a+b|=|a-b|?x1x2+y1y2=0. (6)向量b在a的方向上的投影為|b|cos θ=, 向量a在b的方向上的投影為|a|cos θ=. [高考真題回訪] 回訪1 平面向量的線性運算 1.(20xx·全國卷Ⅰ)已知點A(0,1),B(3,2

3、),向量=(-4,-3),則向量=(  ) A.(-7,-4)       B.(7,4) C.(-1,4) D.(1,4) A [設C(x,y),則=(x,y-1)=(-4,-3), 所以從而=(-4,-2)-(3,2)=(-7,-4).故選A.] 2.(20xx·全國卷Ⅰ)設D,E,F分別為△ABC的三邊BC,CA,AB的中點,則+=(  ) A. B. C. D. C [如圖,+=+++ =+=(+) =·2=.] 回訪2 平面向量的數量積 3.(20xx·全國卷Ⅱ)向量a=(1,-1),b=(-1,2),則(2a+b)·a=(  ) A.-1   B

4、.0 C.1   D.2 C [法一:∵a=(1,-1),b=(-1,2),∴a2=2,a·b=-3, 從而(2a+b)·a=2a2+a·b=4-3=1. 法二:∵a=(1,-1),b=(-1,2), ∴2a+b=(2,-2)+(-1,2)=(1,0), 從而(2a+b)·a=(1,0)·(1,-1)=1,故選C.] 4.(20xx·全國卷Ⅰ)已知向量a=(-1,2),b=(m,1).若向量a+b與a垂直,則m=________. 7 [∵a=(-1,2),b=(m,1), ∴a+b=(-1+m,2+1)=(m-1,3). 又a+b與a垂直,∴(a+b)·a=0,

5、 即(m-1)×(-1)+3×2=0, 解得m=7.] 5.(20xx·全國卷Ⅰ)已知兩個單位向量a,b的夾角為60°,c=ta+(1-t)b,若b·c=0,則t=________. 2 [|a|=|b|=1,〈a,b〉=60°. ∵c=ta+(1-t)b,∴b·c=ta·b+(1-t)b2=t×1×1×+(1-t)×1=+1-t=1-. ∵b·c=0,∴1-=0,∴t=2.] 回訪3 數量積的綜合應用 6.(20xx·全國卷)已知向量a,b夾角為45°,且|a|=1,|2a-b|=,則|b|=________. 3 [∵a,b的夾角為45°,|a|=1, ∴a·b=|a|

6、·|b|cos 45°=|b|, |2a-b|2=4-4×|b|+|b|2=10, ∴|b|=3.] 熱點題型1 平面向量的運算 題型分析:該熱點是高考的必考點之一,考查方式主要體現在以下兩個方面:一是以平面圖形為載體考查向量的線性運算;二是以向量的共線與垂直為切入點,考查向量的夾角、模等. 【例1】(1)(20xx·衡水模擬)已知平面向量m,n的夾角為,且|m|=,|n|=2,在△ABC中,=2m+2n,=2m-6n,D為BC的中點,則||=(  ) A.2    B.4    C.6    D.8 (2)已知△ABC是邊長為1的等邊三角形,點D,E分別是邊AB,BC

7、的中點,連接DE并延長到點F,使得DE=2EF,則·的值為(  ) 【導學號:04024046】 A.- B. C. D. (1)A (2)B [(1)由題意得=(+)=2(m-n), 所以||=2 =2 =2=2,故選A. (2)如圖所示,=+. 又D,E分別為AB,BC的中點, 且DE=2EF,所以=,=+=, 所以=+. 又=-, 則·=·(-) =·-2+2-· =2-2-·. 又||=||=1,∠BAC=60°, 故·=--×1×1×=.故選B.] [方法指津] 1.平面向量的線性運算要抓住兩條主線:一是基于“形”,通過作出向量,

8、結合圖形分析;二是基于“數”,借助坐標運算來實現. 2.正確理解并掌握向量的概念及運算,強化“坐標化”的解題意識,注重數形結合思想、方程思想與轉化思想的應用. 提醒:運算兩平面向量的數量積時,務必要注意兩向量的方向. [變式訓練1](1)在梯形ABCD中,AD∥BC,已知AD=4,BC=6,若=m+n(m,n∈R),則=(  ) A.-3 B.- C. D.3 (2)已知向量a=(-1,2),b=(3,1),c=(x,4),若(a-b)⊥c,則c·(a+b)=(  ) A.(2,12) B.(-2,12) C.14 D.10 (1)A (2)C [(1)如圖

9、,過D作DE∥AB.=m+n=+=-+,所以n=-,m=1,所以=-3.故選A. (2)易知a-b=(-4,1),由(a-b)⊥c,可得(-4)×x+1×4=0,即-4x+4=0,解得x=1,∴c=(1,4). 而a+b=(2,3),∴c·(a+b)=1×2+4×3=14.故選C.] 熱點題型2 三角與向量的綜合問題 題型分析:平面向量作為解決問題的工具,具有代數形式和幾何形式的“雙重型”,高考常在平面向量與三角函數的交匯處命題,通過向量運算作為題目條件. 【例2】 (名師押題)已知向量a=,b=(cos x,-1). (1)當a∥b時,求cos2x-sin 2x的值; (2

10、)設函數f(x)=2(a+b)·b,已知在△ABC中,內角A,B,C的對邊分別為a,b,c.若a=,b=2,sin B=,求y=f(x)+4cos 的取值范圍. 【導學號:04024047】 [解] (1)∵a∥b,∴cos x+sin x=0, 2分 ∴tan x=-, 4分 ∴cos2x-sin 2x===. 6分 (2)f(x)=2(a+b)·b=sin +, 8分 由正弦定理得=,可得sin A=. 9分 ∵b>a,∴A=, 10分 y=f(x)+4cos=sin-. 11分 ∵x∈, ∴2x+∈, ∴-1≤y≤-, 即y的取值范圍是. 1

11、2分 [方法指津] 平面向量與三角函數問題的綜合主要利用向量數量積運算的坐標形式,多與同角三角函數關系、誘導公式以及和角與倍角等公式求值等問題相結合,計算的準確性和三角變換的靈活性是解決此類問題的關鍵點. [變式訓練2] 在△ABC中,角A,B,C所對的邊分別為a,b,c,設m=,n=,且m∥n. (1)求角B的值; (2)若△ABC為銳角三角形,且A=,外接圓半徑R=2,求△ABC的周長. [解] (1)由m∥n,得cos 2A-cos 2B=2coscos, 2分 即2sin2B-2sin2A=2,化簡得sin B=, 4分 故B=或. 6分 (2)由題易知B=,則由A=,得C=π-(A+B)=. 8分 由正弦定理===2R,得a=4sin=2,b=4sin=2,c=4sin=4sin=4×=+, 11分 所以△ABC的周長為+2+3. 12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!