秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版

上傳人:無*** 文檔編號:63984783 上傳時間:2022-03-21 格式:DOC 頁數(shù):7 大?。?22.50KB
收藏 版權(quán)申訴 舉報 下載
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版_第1頁
第1頁 / 共7頁
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版_第2頁
第2頁 / 共7頁
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第三節(jié) 函數(shù)的奇偶性與周期性 [考綱傳真] 1.了解函數(shù)奇偶性的含義.2.會運用基本初等函數(shù)的圖像分析函數(shù)的奇偶性.3.了解函數(shù)周期性、最小正周期的含義,會判斷、應(yīng)用簡單函數(shù)的周期性. (對應(yīng)學(xué)生用書第11頁) [基礎(chǔ)知識填充] 1.奇函數(shù)、偶函數(shù)的概念 圖像關(guān)于原點對稱的函數(shù)叫作奇函數(shù). 圖像關(guān)于y軸對稱的函數(shù)叫作偶函數(shù). 2.判斷函數(shù)的奇偶性 判斷函數(shù)的奇偶性,一般都按照定義嚴格進行,一般步驟是 (1)考察定義域是否關(guān)于原點對稱. (2)考察表達式f(-x)是否等于f(x)或-f(x): 若f(-x)=-f(x),則f(x)為奇函

2、數(shù); 若f(-x)=f(x),則f(x)為偶函數(shù); 若f(-x)=-f(x)且f(-x)=f(x),則f(x)既是奇函數(shù)又是偶函數(shù); 若f(-x)≠-f(x)且f(-x)≠f(x),則f(x)既不是奇函數(shù)又不是偶函數(shù),既非奇非偶函數(shù). 3.函數(shù)的周期性 (1)周期函數(shù):對于函數(shù)f(x),如果存在非零實數(shù)T,對定義域內(nèi)的任意一個x,都有f(x+T)=f(x),就把f(x)稱為周期函數(shù),T稱為這個函數(shù)的周期. (2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期. [知識拓展] 1.函數(shù)奇偶性常用結(jié)論 (1

3、)如果函數(shù)f(x)是偶函數(shù),那么f(x)=f(|x|). (2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性. (3)在公共定義域內(nèi)有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函數(shù)周期性常用結(jié)論 對f(x)定義域內(nèi)任一自變量的值x: (1)若f(x+a)=-f(x),則T=2a(a>0). (2)若f(x+a)=,則T=2a(a>0). (3)若f(x+a)=-,則T=2a(a>0). [基本能力自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)偶函數(shù)圖像不一定

4、過原點,奇函數(shù)的圖像一定過原點.(  ) (2)若函數(shù)y=f(x+a)是偶函數(shù),則函數(shù)y=f(x)關(guān)于直線x=a對稱.(  ) (3)若函數(shù)y=f(x+b)是奇函數(shù),則函數(shù)y=f(x)關(guān)于點(b,0)中心對稱.(  ) (4)函數(shù)f(x)在定義域上滿足f(x+a)=-f(x),則f(x)是周期為2a(a>0)的周期函數(shù).(  ) [答案] (1)× (2)√ (3)√ (4)√ 2.已知f(x)=ax2+bx是定義在[a-1,2a]上的偶函數(shù),那么a+b的值是(  ) A.-         B. C. D.- B [依題意b=0,且2a=-(a-1), ∴b

5、=0且a=,則a+b=.] 3.(20xx·廣東高考)下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是(  ) A.y=x+sin 2x B.y=x2-cos x C.y=2x+ D.y=x2+sin x D [A項,定義域為R,f(-x)=-x-sin 2x=-f(x),為奇函數(shù),故不符合題意; B項,定義域為R,f(-x)=x2-cos x=f(x),為偶函數(shù),故不符合題意; C項,定義域為R,f(-x)=2-x+=2x+=f(x),為偶函數(shù),故不符合題意; D項,定義域為R,f(-x)=x2-sin x,-f(x)=-x2-sin x,因為f(-x)≠-f(x),且f

6、(-x)≠f(x),故為非奇非偶函數(shù).] 4.(20xx·全國卷Ⅱ)已知函數(shù)f(x)是定義在R上的奇函數(shù),當x∈(-∞,0)時,f(x)=2x3+x2,則f(2)=________. 12 [法一:令x>0,則-x<0. ∴f(-x)=-2x3+x2. ∵函數(shù)f(x)是定義在R上的奇函數(shù), ∴f(-x)=-f(x). ∴f(x)=2x3-x2(x>0). ∴f(2)=2×23-22=12. 法二:f(2)=-f(-2) =-[2×(-2)3+(-2)2]=12.] 5.(教材改編)已知函數(shù)f(x)是奇函數(shù),在(0,+∞)上是減函數(shù),且在區(qū)間[a,b](a<b

7、<0)上的值域為[-3,4],則在區(qū)間[-b,-a]上(  ) A.有最大值4 B.有最小值-4 C.有最大值-3 D.有最小值-3 B [法一:根據(jù)題意作出y=f(x)的簡圖,由圖知,選B. 法二:當x∈[-b,-a]時,-x∈[a,b], 由題意得f(b)≤f(-x)≤f(a), 即-3≤-f(x)≤4, ∴-4≤f(x)≤3, 即在區(qū)間[-b,-a]上f(x)min=-4, f(x)max=3,故選B.] (對應(yīng)學(xué)生用書第12頁) 函數(shù)奇偶性的判斷  判斷下列函數(shù)的奇偶性: (1)f(x)=(x+1); (2)f(x)=lg(

8、-2x); (3)f(x)=+; (4)f(x)= 【導(dǎo)學(xué)號:00090021】 [解] (1)由≥0可得函數(shù)的定義域為(-1,1]. ∵函數(shù)定義域不關(guān)于原點對稱, ∴函數(shù)為非奇非偶函數(shù). (2)函數(shù)的定義域為R,且f(-x)=lg(+2x)=lg =-lg(-2x)=-f(x). 故原函數(shù)為奇函數(shù). (3)由得x2=3,∴x=±, 即函數(shù)f(x)的定義域為{-,}, 從而f(x)=+=0. 因此f(-x)=-f(x)且f(-x)=f(x), ∴函數(shù)f(x)既是奇函數(shù)又是偶函數(shù). (4)易知函數(shù)的定義域為(-∞,0)∪(0,+∞),關(guān)于原

9、點對稱,又當x>0時,f(x)=x2+x, 則當x<0時,-x>0, 故f(-x)=x2-x=f(x); 當x<0時,f(x)=x2-x,則當x>0時,-x<0, 故f(-x)=x2+x=f(x),故原函數(shù)是偶函數(shù). [規(guī)律方法] 1.利用定義判斷函數(shù)奇偶性的步驟: 2.判斷分段函數(shù)的奇偶性應(yīng)分段分別證明f(-x)與f(x)的關(guān)系,只有對各段上的x都滿足相同的關(guān)系時,才能判斷其奇偶性;也可以利用函數(shù)的圖像進行判斷. [變式訓(xùn)練1] (1)(20xx·商丘模擬)已知函數(shù)f(x)=ln(e+x)+ln(e-x),則f(x)是 (  ) A.奇函數(shù),且在(0,e)

10、上是增加的 B.奇函數(shù),且在(0,e)上是減少的 C.偶函數(shù),且在(0,e)上是增加的 D.偶函數(shù),且在(0,e)上是減少的 (2)(20xx·全國卷Ⅰ)設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是(  ) 【導(dǎo)學(xué)號:00090022】 A.f(x)g(x)是偶函數(shù) B.|f(x)|g(x)是奇函數(shù) C.f(x)|g(x)|是奇函數(shù) D.|f(x)g(x)|是奇函數(shù) (1)D (2)C [(1)f(x)的定義域為(-e,e),關(guān)于原點對稱. f(-x)=ln(e-x)+ln(e+x)=f(x),∴函數(shù)

11、f(x)是偶函數(shù). 又f(x)=ln(e2-x2),所以f(x)在(0,e)上是減少的. (2)A:令h(x)=f(x)·g(x),則h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(huán)(x), ∴h(x)是奇函數(shù),A錯. B:令h(x)=|f(x)|g(x),則h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x), ∴h(x)是偶函數(shù),B錯. C:令h(x)=f(x)|g(x)|,則h(-x)=f(-x)|g(-x)|=-f(x)|·g(x)|=-h(huán)(x),∴h(x)是奇函數(shù),C正確. D:令h(x)=|f(x)

12、·g(x)|,則h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x), ∴h(x)是偶函數(shù),D錯.] 函數(shù)奇偶性的應(yīng)用  (1)(20xx·全國卷Ⅰ)若函數(shù)f(x)=xln(x+)為偶函數(shù),則a=________. (2)已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2-4x,則f(x)=________. (1)1 (2) [(1)∵f(x)為偶函數(shù), ∴f(-x)-f(x)=0恒成立, ∴-xln(-x+)-xln(x+)=0恒成立, ∴xln a=0恒成立,∴l(xiāng)n a=0,即a=1. (2)∵f

13、(x)是定義在R上的奇函數(shù),∴f(0)=0. 又當x<0時,-x>0,∴f(-x)=x2+4x.又f(x)為奇函數(shù), ∴f(-x)=-f(x), 即f(x)=-x2-4x(x<0), ∴f(x)=] [規(guī)律方法] 1.已知函數(shù)的奇偶性求參數(shù),一般采用待定系數(shù)法求解,根據(jù)f(x)±f(x)=0得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進而得出參數(shù)的值. 2.已知函數(shù)的奇偶性求函數(shù)值或解析式,將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求出,或充分利用奇偶性得出關(guān)于f(x)的方程(組),從而可得f(x)的值或解析式. [變式訓(xùn)練2] (1)設(shè)f

14、(x)為定義在R上的奇函數(shù).當x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)=(  ) A.-3     B.-1 C.1 D.3 (2)(20xx·青島模擬)若f(x)=ln(e3x+1)+ax是偶函數(shù),則a=________. (1)A (2)- [(1)因為f(x)為定義在R上的奇函數(shù),所以有f(0)=20+2×0+b=0,解得b=-1,所以當x≥0時,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3. (2)f(-x)=ln(e-3x+1)-ax=ln-ax=ln(1+e3x)-3x-ax,依題意得,對任意x∈R,都有

15、f(-x)=f(x),即ln(1+e3x)-3x-ax=ln(1+e3x)+ax, 化簡得2ax+3x=0(x∈R),因此2a+3=0,解得a=-.] 函數(shù)的周期性及其應(yīng)用  (1)(20xx·山東高考)已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x-2).若當x∈[-3,0]時,f(x)=6-x,則f(919)=________. (2)設(shè)定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且當x∈[0,2)時,f(x)=2x-x2,則f(0)+f(1)+f(2)+…+f(2 017)=________. (1)6 (2)1 009 [(1)∵f(x+4)=f(

16、x-2), ∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x), ∴f(x)是周期為6的周期函數(shù), ∴f(919)=f(153×6+1)=f(1). 又f(x)是定義在R上的偶函數(shù), ∴f(1)=f(-1)=6,即f(919)=6. (2)∵f(x+2)=f(x),∴函數(shù)f(x)的周期T=2. 又當x∈[0,2)時,f(x)=2x-x2,∴f(0)=0,f(1)=1,f(0)+f(1)=1. ∴f(0)+f(1)=f(2)+f(3)=f(4)+f(5)=…=f(2 016)+f(2 017)=1, ∴f(0)+f(1)+f(2)+…+f(

17、2 017)=1 009.] [母題探究1] 若將本例(2)中“f(x+2)=f(x)”改為“f(x+1)=-f(x)”,則結(jié)論如何? [解] ∵f(x+1)=-f(x), ∴f(x+2)=f[(x+1)+1]=-f(x+1)=f(x). 故函數(shù)f(x)的周期為2. 由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009. [母題探究2] 若將本例(2)中“f(x+2)=f(x)”改為“f(x+1)=”,則結(jié)論如何? [解] ∵f(x+1)=, ∴f(x+2)=f[(x+1)+1]==f(x). 故函數(shù)f(x)的周期為2. 由本例可知,f

18、(0)+f(1)+f(2)+…+f(2 017)=1 009. [規(guī)律方法] 1.判斷函數(shù)的周期只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T,根據(jù)函數(shù)的周期性,可以由函數(shù)局部的性質(zhì)得到函數(shù)的整體性質(zhì). 2.在解決具體問題時,要注意“若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期”的應(yīng)用. [變式訓(xùn)練3] (20xx·長沙模擬(一))已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)=則下列函數(shù)值為1的是(  ) A.f(2.5) B.f(f(2.5)) C.f(f(1.5)) D.f(2) D [由f(x+1)=-f(x)知f(x+2)=-f(x+1)=f(x),于是f(x)是以2為周期的周期函數(shù),從而f(2.5)=f(0.5)=-1,f(f(2.5))=f(-1)=f(1)=-1,f(f(1.5))=f(f(-0.5))=f(1)=-1,f(2)=f(0)=1,故選D.]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!