湖北版高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題09 圓錐曲線(xiàn)含解析理
《湖北版高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題09 圓錐曲線(xiàn)含解析理》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《湖北版高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題09 圓錐曲線(xiàn)含解析理(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 【備戰(zhàn)20xx】(湖北版)高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題09 圓錐曲線(xiàn)(含解析)理 一.選擇題 1.【2005年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷5】雙曲線(xiàn)離心率為2,有一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,則mn的值為( ) A. B. C. D. 【答案】A 【解析】 試題分析:拋物線(xiàn)的焦點(diǎn)為(1,0),∴得m=,n=,∴mn=,選A. 2.【2006年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷】設(shè)過(guò)點(diǎn)的直線(xiàn)分別與軸的正半軸和
2、軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),為坐標(biāo)原點(diǎn),若且,則點(diǎn)的軌跡方程是 ( ) A. B. C. D. 3.【2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷7】雙曲線(xiàn)的左準(zhǔn)線(xiàn)為,左焦點(diǎn)和右焦點(diǎn)分別為和;拋物線(xiàn)的準(zhǔn)線(xiàn)為,焦點(diǎn)為與的一個(gè)交點(diǎn)為,則等于 ( ) A. B. C. D. 4.【2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷10】如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)
3、的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子: ①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④<. 其中正確式子的序號(hào)是( ) A. ①③ B.②③ C.①④ D.②④ 【答案】B 【解析】 試題分析:由焦點(diǎn)到頂點(diǎn)的距離可知②正確,由橢圓的離心率知③正確,故應(yīng)選B. 5.【2009年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷7】已知雙曲線(xiàn)的準(zhǔn)線(xiàn)過(guò)橢圓的焦點(diǎn),則直線(xiàn)與橢圓至多有一個(gè)交
4、點(diǎn)的充要條件是( ) A. B. C. D. 6.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷2】設(shè)集合,,則的子集的個(gè)數(shù)是( ) A.4 B.3 C .2 D.1 【答案】A 【解析】 試題分析:畫(huà)出橢圓和指數(shù)函數(shù)圖象,可知其有兩個(gè)不同交點(diǎn),記為A1、A2,則的子集應(yīng)為共四種,故選A. 7.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷4】將兩個(gè)頂點(diǎn)在拋物線(xiàn)上,另一個(gè)頂點(diǎn)是拋物線(xiàn)焦點(diǎn)的正三角形個(gè)數(shù)記為n,則(
5、 ) A. B. C. D. 8.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷5】已知,則雙曲線(xiàn)與的( ) A.實(shí)軸長(zhǎng)相等 B.虛軸長(zhǎng)相等 C.焦距相等 D. 離心率相等 【答案】D 【解析】 試題分析:雙曲線(xiàn)的離心率是,雙曲線(xiàn)的離心率是,故選D. 9.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷9】已知是橢圓和雙曲線(xiàn)的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線(xiàn)的離心率的倒數(shù)之和的最大值為( ) A. B.
6、 C.3 D.2 所以. 所以橢圓和雙曲線(xiàn)的離心率的倒數(shù)之和的最大值為,故選A. 考點(diǎn):橢圓、雙曲線(xiàn)的定義與性質(zhì),利用三角換元法求最值,難度中等. 10. 【20xx高考湖北,理8】將離心率為的雙曲線(xiàn)的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)同時(shí)增加個(gè)單位長(zhǎng)度,得到離心率為的雙曲線(xiàn),則( ) A.對(duì)任意的, B.當(dāng)時(shí),;當(dāng)時(shí), C.對(duì)任意的, D.當(dāng)時(shí),;當(dāng)時(shí), 二.填空題 1.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷14】如圖,雙曲線(xiàn)的兩頂點(diǎn)為,,虛軸兩端點(diǎn)為,,兩焦點(diǎn)為,. 若以為直徑的圓內(nèi)
7、切于菱形,切點(diǎn)分別為. 則: A1 A2 y B2 B1 A O B C D F1 F2 x (Ⅰ)雙曲線(xiàn)的離心率 ; (Ⅱ)菱形的面積與矩形的面積的比值 . 三.解答題 1.【2005年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷21】設(shè)A、B是橢圓上的兩點(diǎn),點(diǎn)N(1,3)是線(xiàn)段AB的中點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與橢圓相交于C、D兩點(diǎn). (Ⅰ)確定的取值范圍,并求直線(xiàn)AB的方程; (Ⅱ)試判斷是否
8、存在這樣的,使得A、B、C、D四點(diǎn)在同一個(gè)圓上?并說(shuō)明理由. (此題不要求在答題卡上畫(huà)圖) 【解析】 (Ⅰ)解法1:依題意,可設(shè)直線(xiàn)AB的方程為,整理得 ① 設(shè)是方程①的兩個(gè)不同的根, ∴ ② 同理可得 ⑥ ∵當(dāng)時(shí), 假設(shè)存在>12,使得A、B、C、D四點(diǎn)共圓,則CD必為圓的直徑,點(diǎn)M為圓心. 點(diǎn)M到直線(xiàn)AB的距離為 ⑦ 于是,由④、⑥、⑦式和勾股定理可得 計(jì)算可得,∴A在以CD為直徑的圓上. 又B為A關(guān)于CD的對(duì)稱(chēng)點(diǎn),∴A、B、C、D四點(diǎn)共圓. (注:也可用勾股定理證明AC⊥AD) 2.【2006年普通高等學(xué)校招生全國(guó)統(tǒng)一考
9、試湖北卷】設(shè)分別為橢圓的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且為它的右準(zhǔn)線(xiàn)。
(Ⅰ)、求橢圓的方程;
(Ⅱ)、設(shè)為右準(zhǔn)線(xiàn)上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線(xiàn)分別與橢圓相交于異于的點(diǎn),證明點(diǎn)在以為直徑的圓內(nèi)。
(此題不要求在答題卡上畫(huà)圖)
解法2:由(Ⅰ)得A(-2,0),B(2,0).設(shè)M(x1,y1),N(x2,y2),
則-2 10、
又直線(xiàn)AP的方程為y=,直線(xiàn)BP的方程為y=,
而點(diǎn)兩直線(xiàn)AP與BP的交點(diǎn)P在準(zhǔn)線(xiàn)x=4上,
∴,即y2=
又點(diǎn)M在橢圓上,則,即
于是將、代入,化簡(jiǎn)后可得-=.
從而,點(diǎn)B在以MN為直徑的圓內(nèi).
3.【2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷19】在平面直角坐標(biāo)系xOy中,過(guò)定點(diǎn)C(0,p)作直線(xiàn)與拋物線(xiàn)x2=2px(p>0)相交于A、B兩點(diǎn).
(Ⅰ)若點(diǎn)N是點(diǎn)C關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱(chēng)點(diǎn),
求△ANB面積的最小值;
(Ⅱ)是否存在垂直于y軸的直線(xiàn)l,使得l被以AC為直徑 11、的圓截得弦長(zhǎng)恒為定值?若存在,求出l的方程;若不存在,說(shuō)明理由.(此題不要求在答題卡上畫(huà)圖)
N
O
A
C
B
y
x
l
4.【2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷19】如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點(diǎn),
∠POB=30°,曲線(xiàn)C是滿(mǎn)足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線(xiàn)C過(guò)點(diǎn)P.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線(xiàn)C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)D的直線(xiàn)l與曲線(xiàn)C相交于不同的兩點(diǎn)E、F.若△OEF的面積不小于2,求直線(xiàn)l斜率的取值范圍.
【解析】(Ⅰ)解法1:以O(shè)為 12、原點(diǎn),AB、OD所在直線(xiàn)分別為x軸、y軸,建立平面直角坐標(biāo)系,則A(-2,0),B(2,0),D(0,2),P(),依題意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲線(xiàn)C是以原點(diǎn)為中心,A、B為焦點(diǎn)的雙曲線(xiàn).
設(shè)實(shí)平軸長(zhǎng)為a,虛半軸長(zhǎng)為b,半焦距為c,
則c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲線(xiàn)C的方程為.
解法2:同解法1建立平面直角坐標(biāo)系,則依題意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.
∴曲線(xiàn)C是以原點(diǎn)為中心,A、B為焦點(diǎn)的雙曲線(xiàn).
設(shè)雙曲線(xiàn)的方程為>0,b>0).
則由 解得a2=b2=2,
∴曲線(xiàn)C 13、的方程為
(Ⅱ)解法1:依題意,可設(shè)直線(xiàn)l的方程為y=kx+2,代入雙曲線(xiàn)C的方程并整理得(1-k2)x2-4kx-6=0.
∵直線(xiàn)l與雙曲線(xiàn)C相交于不同的兩點(diǎn)E、F,
∴
∴k∈(-,-1)∪(-1,1)∪(1,).
設(shè)E(x,y),F(xiàn)(x2,y2),則由①式得x1+x2=,于是
|EF|=
=
而原點(diǎn)O到直線(xiàn)l的距離d=,
∴S△DEF=
綜合②、④知,直線(xiàn)l的斜率的取值范圍為[-,-1]∪(-1,1)∪(1,).
5.【2009年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷20】過(guò)拋物線(xiàn)的對(duì)稱(chēng)軸上一點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于M、N兩點(diǎn),自M、N向直線(xiàn)作垂線(xiàn),垂足分 14、別為、。
(Ⅰ)當(dāng)時(shí),求證:⊥;
(Ⅱ)記、 、的面積分別為、、,是否存在,使得對(duì)任意的,都有成立。若存在,求出的值;若不存在,說(shuō)明理由。
6.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷19】已知一條曲線(xiàn)C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線(xiàn)C有兩個(gè)交點(diǎn)A,B的任一直線(xiàn),都有?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由。
7.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷20】平面內(nèi)與 15、兩定點(diǎn)連線(xiàn)的斜率之積等于非零常數(shù)的m的點(diǎn)的軌跡,加上兩點(diǎn)所成的曲線(xiàn)C可以是圓、橢圓、或雙曲線(xiàn)。
(Ⅰ)求曲線(xiàn)C的方程,并討論C的形狀與m值的關(guān)系;
(Ⅱ)當(dāng)m=-1時(shí),對(duì)應(yīng)的曲線(xiàn)為;對(duì)給定的,對(duì)應(yīng)的曲線(xiàn)為。設(shè)是的兩個(gè)焦點(diǎn)。試問(wèn):在上是否存在點(diǎn)N,使得的面積。若存在,求的值,若不存在,請(qǐng)說(shuō)明理由。
由①的,由②得,,
當(dāng),即或時(shí),
存在點(diǎn)N使得,;
8.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷21】設(shè)是單位圓上的任意一點(diǎn),是過(guò)點(diǎn)與軸垂直的直線(xiàn),是直線(xiàn)與 軸的交點(diǎn),點(diǎn)在直線(xiàn)上,且滿(mǎn)足. 當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn).
(Ⅰ)求曲線(xiàn)的方程,判斷曲線(xiàn)為何種圓錐曲 16、線(xiàn),并求其焦點(diǎn)坐標(biāo);
(Ⅱ)過(guò)原點(diǎn)且斜率為的直線(xiàn)交曲線(xiàn)于,兩點(diǎn),其中在第一象限,它在軸上的射影為點(diǎn),直線(xiàn)交曲線(xiàn)于另一點(diǎn). 是否存在,使得對(duì)任意的,都有?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】(Ⅰ)如圖1,設(shè),,則由,
可得,,所以,. ①
因?yàn)辄c(diǎn)在單位圓上運(yùn)動(dòng),所以. ②
將①式代入②式即得所求曲線(xiàn)的方程為.
9.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷21】如圖,已知橢圓與的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸均為且在軸上,短軸長(zhǎng)分別為,,過(guò)原點(diǎn)且不與軸重合的直線(xiàn)與,的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為 17、,,,。記,和的面積分別為和。
(I)當(dāng)直線(xiàn)與軸重合時(shí),若,求的值;
(II)當(dāng)變化時(shí),是否存在與坐標(biāo)軸不重合的直線(xiàn),使得?并說(shuō)明理由。
第21題圖
【解析】(I),
解得:(舍去小于1的根)
10.【20xx年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖北卷21】在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為.
(I)求軌跡為的方程;
(II)設(shè)斜率為的直線(xiàn)過(guò)定點(diǎn),求直線(xiàn)與軌跡恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公共點(diǎn)時(shí)的相應(yīng)取值范圍.
【答案】(I);(II)當(dāng)時(shí)直線(xiàn)與軌跡恰有一個(gè)公共點(diǎn); 當(dāng)時(shí) 18、,故此時(shí)直線(xiàn)與軌跡恰有兩個(gè)公共點(diǎn); 當(dāng)時(shí),故此時(shí)直線(xiàn)與軌跡恰有三個(gè)公共點(diǎn).
【解析】
試題分析:(I)設(shè)點(diǎn),根據(jù)條件列出等式,在用兩點(diǎn)間的距離公式表示,化簡(jiǎn)整理即得;(II)在點(diǎn)的軌跡中,記,,設(shè)直線(xiàn)的方程為即當(dāng)時(shí),直線(xiàn)與有一個(gè)共點(diǎn),與有一個(gè)公共點(diǎn).
當(dāng)時(shí) ,直線(xiàn)與有兩個(gè)共點(diǎn),與沒(méi)有公共點(diǎn).
故當(dāng)時(shí),故此時(shí)直線(xiàn)與軌跡恰有兩個(gè)公共點(diǎn).
11. 【20xx高考湖北,理21】一種作圖工具如圖1所示.是滑槽的中點(diǎn),短桿可繞轉(zhuǎn)動(dòng),長(zhǎng)桿通過(guò)處鉸鏈與連接,上的栓子可沿滑槽AB滑動(dòng),且,.當(dāng)栓子在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)繞轉(zhuǎn)動(dòng)一周(不動(dòng)時(shí),也不動(dòng)),處的筆尖畫(huà)出的曲線(xiàn)記為.以為原點(diǎn),所在的直 19、線(xiàn)為軸建立如圖2所示的平面直角坐標(biāo)系.
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)設(shè)動(dòng)直線(xiàn)與兩定直線(xiàn)和分別交于兩點(diǎn).若直線(xiàn)總與曲線(xiàn)有且只有一個(gè)公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.
x
D
O
M
N
y
第21題圖2
第21題圖1
【答案】(Ⅰ);(Ⅱ)存在最小值8.
【解析】(Ⅰ)設(shè)點(diǎn),,依題意,
第21題解答圖
,且,
所以,且
即且
由于當(dāng)點(diǎn)不動(dòng)時(shí),點(diǎn)也不動(dòng),所以不恒等于0,
于是,故,代入,可得,
即所求的曲線(xiàn)的方程為
當(dāng)時(shí),.
因,則,,所以,
當(dāng)且僅當(dāng)時(shí)取等號(hào).
所以當(dāng)時(shí),的最小值為8.
綜合(1)(2)可知,當(dāng)直線(xiàn)與橢圓在四個(gè)頂點(diǎn)處相切時(shí),的面積取得最小值8.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程、幾何性質(zhì),直線(xiàn)與圓、橢圓的位置關(guān)系,最值.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備采購(gòu)常用的四種評(píng)標(biāo)方法
- 車(chē)間員工管理須知(應(yīng)知應(yīng)會(huì))
- 某公司設(shè)備維護(hù)保養(yǎng)工作規(guī)程
- 某企業(yè)潔凈車(chē)間人員進(jìn)出管理規(guī)程
- 企業(yè)管理制度之5S管理的八個(gè)口訣
- 標(biāo)準(zhǔn)化班前會(huì)的探索及意義
- 某企業(yè)內(nèi)審員考試試題含答案
- 某公司環(huán)境保護(hù)考核管理制度
- 現(xiàn)場(chǎng)管理的定義
- 員工培訓(xùn)程序
- 管理制度之生產(chǎn)廠(chǎng)長(zhǎng)的職責(zé)與工作標(biāo)準(zhǔn)
- 某公司各級(jí)專(zhuān)業(yè)人員環(huán)保職責(zé)
- 企業(yè)管理制度:5S推進(jìn)與改善工具
- XXX公司環(huán)境風(fēng)險(xiǎn)排查及隱患整改制度
- 生產(chǎn)車(chē)間基層管理要點(diǎn)及建議