購買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢Q:1304139763
SY-025-BY-2
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
學(xué)生姓名
潘鵬山
系部
汽車與交通工程學(xué)院
專業(yè)、班級(jí)
車輛工程07-11班
指導(dǎo)教師姓名
安永東
職稱
副教授
從事
專業(yè)
車輛工程
是否外聘
□是■否
題目名稱
磁流變式汽車減振器設(shè)計(jì)
一、設(shè)計(jì)(論文)目的、意義
分析磁流變減振器的工作模式,結(jié)合現(xiàn)有汽車液壓筒式減振器的結(jié)構(gòu)和工作特點(diǎn),對(duì)磁流變減振器進(jìn)行結(jié)構(gòu)設(shè)計(jì),對(duì)磁流變減振器的磁路進(jìn)行設(shè)計(jì)。
二、設(shè)計(jì)(論文)內(nèi)容、技術(shù)要求(研究方法)
(一)主要設(shè)計(jì)內(nèi)容
磁流變減振器的磁路設(shè)計(jì);減振器的結(jié)構(gòu)設(shè)計(jì);對(duì)減振器的性能進(jìn)行分析。
(二)主要技術(shù)指標(biāo)、要求
零場(chǎng)粘度低,在相同剪切屈服應(yīng)力的條件下,使磁流變的阻尼器調(diào)節(jié)范圍更大;.在外加磁場(chǎng)作用下,磁流變體的剪切屈服強(qiáng)度至少達(dá)30-50kpa;在相當(dāng)寬的溫度范圍(-40--100'C)具有良好的穩(wěn)定性;磁流變響應(yīng)時(shí)間短(毫秒級(jí)),使磁流變阻尼器能跟上控制系統(tǒng)的響應(yīng)速度;
三、設(shè)計(jì)(論文)完成后應(yīng)提交的成果
1、設(shè)計(jì)說明書一份,1.5萬字以上;
2、磁流變減振器裝配圖一張、零件圖若干張,折合三張A0圖紙。對(duì)所設(shè)計(jì)的磁流變減振器進(jìn)行性能仿真,分析仿真結(jié)果,小論文一篇。
四、設(shè)計(jì)(論文)進(jìn)度安排
1、進(jìn)行文獻(xiàn)檢索查,查看相關(guān)資料,對(duì)課題的基本內(nèi)容有一定的認(rèn)識(shí)和了解。完成開題報(bào)告。第1-2周(2月28日~3月11日)
2、初步確定設(shè)計(jì)的總體方案,討論確定方案;對(duì)磁流變減振器進(jìn)行初步設(shè)計(jì)和選取。第3-6周(3月14日~4月8日)
3、提交設(shè)計(jì)草稿,進(jìn)行討論,修定。第7周(4月11日~4月15日)
4、詳細(xì)設(shè)計(jì)液壓系統(tǒng),設(shè)計(jì)非標(biāo)件,繪制減振器裝配圖及零件圖。第8-12周(4月18日~5月20日)
5、提交正式設(shè)計(jì),教師審核。第13-14周(5月23日~6月3日)
6、按照審核意見進(jìn)行修改。第15周(6月6日~6月10日)
7、整理所有材料,裝訂成冊(cè),準(zhǔn)備答辯。第16周(6月13日~6月17日)
五、主要參考資料
[1] 賀建民等,磁流變減振器的分析與設(shè)計(jì),第五屆全國磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議,2008.10
[2] 徐偉,汽車懸架阻尼匹配研究機(jī)減振器設(shè)計(jì),農(nóng)也裝備與車輛工程,2009.6
[3] 李連進(jìn),磁流變阻尼器的參數(shù)優(yōu)化與特征仿真,蘭州理工大學(xué)學(xué)報(bào),2006.4
六、備注
指導(dǎo)教師簽字:
年 月 日
教研室主任簽字:
年 月 日
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
磁流變減振器基于Matlab的仿真分析
潘鵬山
摘要:基于磁流變減振器在汽車懸架減振系統(tǒng)半主動(dòng)控制中的廣泛應(yīng)用,根據(jù)磁流變液的特點(diǎn)和磁流變減振器阻尼力與結(jié)構(gòu)參數(shù)的關(guān)系,設(shè)計(jì)了新型的磁流變減振器,并對(duì)影響磁流變減振器性能的參數(shù)進(jìn)行了仿真。仿真表明,該磁流變減振器設(shè)計(jì)計(jì)算是一種能優(yōu)化阻尼力的有效算法。
關(guān)鍵詞:磁流變減振器;半主動(dòng)控制;磁流變液
1.1減振器的阻尼力計(jì)算模型
本文選用剪切閥式磁流變阻尼器工作模式進(jìn)行結(jié)構(gòu)設(shè)計(jì),在結(jié)構(gòu)設(shè)計(jì)前,必須明確該工作模式磁流變液的流變方程,繼而推導(dǎo)出磁流變阻尼力的計(jì)算模型,這是結(jié)構(gòu)設(shè)計(jì)過程中的依據(jù)所在?;诩羟虚y式磁流變阻尼器的阻尼通道的寬度遠(yuǎn)大于其阻尼間隙,因而可簡化成磁流變液在兩相對(duì)運(yùn)動(dòng)平板之間的運(yùn)動(dòng)。為了簡化分析,工作于剪切閥式的磁流變阻尼力可以看成是在閥式工作模式下的阻尼力和剪切工作模式下阻尼力的疊加。
在外加磁場(chǎng)作用下,磁流變液表現(xiàn)Bingham流體,其磁流變液在平板的流動(dòng)和速度分布如圖1.1所示,其本構(gòu)關(guān)系可用下列方程描述:
(1.1)
(1.2)
圖1.1 磁流變液在平板中的流動(dòng)和速度分布
在閥式工作模式下磁流變液的速度分布如圖1.1所示。假設(shè)磁流變液的體積流速Q(mào)在x方向上一維流動(dòng),在y方向上不流動(dòng)。設(shè)兩平板之間的間隙為h,長度為L,寬度為b,由流體力學(xué)可得下列微分方程:
(1.3)
式中u、v分別是磁流變液在x、y方向上的流動(dòng)速度;是磁流變液在x方向的壓力梯度,為了簡化將壓力梯度是為x方向線性變化=,l是阻尼通道的長度;是阻尼通道兩端的壓力差;是磁流變液的密度;t是時(shí)間變量;由于流動(dòng)速度低,可不計(jì)慣性效應(yīng),;令沿x的剪切應(yīng)力,由于磁流變流動(dòng)的連續(xù)性,沿x方向的速度不變即則方程(1.3)簡化為:
(1.4)
對(duì)其積分可得:
(1.5)
D是待定的積分常數(shù)。
由公式(1.4)可知,磁流變液受到的剪切應(yīng)力沿平板間隙是按線性分布的,靠近平板的磁流變液受到的剪切力最大,而中間對(duì)稱面上的磁流變液受到的剪切應(yīng)力最小,根據(jù)極板兩端壓差產(chǎn)生的剪切應(yīng)力與極板附近磁流變液的臨界剪切屈服應(yīng)力比較,當(dāng)前者小于后者磁流變液靜止不動(dòng);當(dāng)前者大于后者將產(chǎn)生如圖1.1所示的流體狀態(tài),即靠近平板處得磁流變液流動(dòng);而中間對(duì)稱區(qū)間的磁流變液不流動(dòng)。可將此時(shí)的磁流變液的流動(dòng)分為屈服流動(dòng),剛性流動(dòng),屈服流動(dòng)三個(gè)區(qū)域。
區(qū)域?:屈服流動(dòng) 剪切應(yīng)變率,由公式(1.1)可得:
(1.6)
將公式(1-6)代入公式(1.5)中,并注意u(0)=0,求解微分方程如下:
(1.7)
(1.8)
(1.9)
區(qū)域?:剛性流動(dòng),剪切應(yīng)變率,同理可得:
(1.10)
區(qū)域?:屈服流動(dòng),剪切應(yīng)變率
(1.11)
將公式(1.11)代入公式(1.5),已知u(h)=0,,求解微分方程得:
(1.12)
(1.13)
由公式和(1.8)公式(1.13)相減可得剛性流動(dòng)區(qū)得厚度為
(1.14)
由于存在,由公式(1.9)和公式(1.13)可得
(1.15)
(1.16)
由公式(1.14)和公式(1.16)可得:
; (1.17)
流經(jīng)平板間隙的磁流變液的體積流量Q可有下列得到:
(1.18)
代入化簡可得
(1.19)
經(jīng)進(jìn)一步化簡可得壓差近似公式:
(1.20)
考慮到阻尼器的實(shí)際阻尼通道為環(huán)形通道,流動(dòng)模式下的阻尼力可以表示為:
(1.21)
式中為活塞受壓的有效面積。
在移動(dòng)平板的影響下,磁流變液發(fā)生屈服流動(dòng),剪切模式下磁流變液的速度分布如圖1.2所示。剪切應(yīng)變率,則由公式(1.1),剪切應(yīng)力可表示為:
(1.22)
假如磁流變液的速度是沿y方向分布如圖1.2所示,即
圖1.2 剪切模式下磁流變液的速度分布
剪切模式下的阻尼力:
(1.23)
混合工作模式的阻尼力可視為流動(dòng)模式、剪切模式兩種工作模式下的阻尼力的疊加。即,由于符號(hào)的正負(fù)只反映活塞運(yùn)動(dòng)的方向,因此,整理上式得:
(1.24)
式中參數(shù)c變化范圍2-3,本文c=2,因此剪切閥式磁流變阻尼器阻尼力為:
(1.25)
;
公式可以改為:
(1.26)
(1.27)
(1.28)
式中粘滯阻尼力系數(shù):;庫倫阻尼力:;為磁流變阻尼器活塞運(yùn)動(dòng)速度;sgn為符號(hào)函數(shù);為30-50K
從上式可以看出磁流變阻尼器的阻尼力由兩部分組成,一部分由液體流動(dòng)時(shí)液體粘性產(chǎn)生的粘滯阻尼力,而另一部分由磁流變效應(yīng)產(chǎn)生的庫倫阻尼力組成。
1.2磁流變減振器的仿真分析
磁流變減振器的數(shù)學(xué)模型采用公式1.25,建立磁流變減振器的仿真模型如圖1.3所示。
圖1.3 仿真模型
圖1.4Matlab 仿真圖
由公式(1.25)作為數(shù)學(xué)模型可進(jìn)行計(jì)算。
F=()+
()
=1504.5+2108
上式的計(jì)算結(jié)果是在阻尼間隙為0.6mm是計(jì)算而得。在不同的速度下可計(jì)算出不同的磁流變阻尼力的值。
圖1.4是磁流變減振器的間隙在0.6mm時(shí),各個(gè)速度下阻尼力的大小。從圖中可以看出磁流變減振器的阻尼力隨速度的增大而增大。這符合磁流變減振器對(duì)阻尼力的要求。
如上變化可繪制在不同的間隙和不同的速度下,阻尼力的變化關(guān)系,表1.1就是磁流變減振器在不同縫隙和不同速度下的阻尼力大小。
表1.1 磁流變減振器的阻尼力隨縫隙和速度的變化關(guān)系
縫隙mm
速度
0.4
0.5
0.7
0.9
1
0.5
2709.8
2860.25
3161.15
3462.05
3612.5
0.8
1455.12
1491.9
1565.46
1639.02
1675.8
1.0
983.4
1002.25
1039.95
1077.65
1096.5
1.5
810.48
816.1
827.34
838.58
844.2
2.0
597.56
599.95
604.73
609.51
611.9
由上表中可以看出,隨之縫隙的增加,在一定的速度下,阻尼力是隨之縫隙的增加而減小的,在一定的縫隙大小的情況下,隨著速的增加,阻尼力是增大的,這與汽車實(shí)際的行駛情況是一致的。
1.3總結(jié)
本章是對(duì)磁流變阻尼器的仿真,在仿真的過程中,首先要建立磁流變減振器的數(shù)學(xué)模型,因?yàn)橹挥薪⒘舜帕髯儨p振器的數(shù)學(xué)模型,才能為下一步的建立仿真打下基礎(chǔ)。仿真運(yùn)用的軟件為Matlsb軟件,在建立了模塊后,輸入不同頻率和電流來找到最大的阻尼力。并分析了影響減振器阻尼力大小的速度和電流的因素。得出了減振器的阻尼力與電流和頻率的關(guān)系。
參考文獻(xiàn):
[1]王金鋼,等.磁流變阻尼器阻尼性能仿真研究[J].石油機(jī)械,2006,34(10):19-23
[2]蒙延佩,等.汽車磁流變阻尼器磁路設(shè)計(jì)及相關(guān)問題[J].功能材料,2006(5):768-770
[3]司誥,等.磁流變阻尼器管道流動(dòng)特性研究[J].功能材料,2006(5):831-833
[4]蔣建東.梁錫昌.張博適用于車輛的旋轉(zhuǎn)式磁流變阻尼器研究[期刊論文]-汽車工程2005(1)
[5]徐永興.曹民.磁流變減振器優(yōu)化的設(shè)計(jì)計(jì)算[J].上海交通大學(xué)學(xué)報(bào),2004,38(8):1423-1427
[6]賀建民等,磁流變減振器的分析與設(shè)計(jì),第五屆全國磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議,2008.10
[7]徐偉,汽車懸架阻尼匹配研究機(jī)減振器設(shè)計(jì),農(nóng)也裝備與車輛工程,2009.6
[8]Lai C Y,Liao W H.Vibration Control of a Suspension System Via a Magnetorheo logical FluidDamper.Journal of Vibration and Control,2002,8(4):527-547.
[9]Yang G,Spencer Jr BF,Carlson JD,et al.Large scale MR fluid Damper: Modeling and Dyamic Performance Considerations.Engineering Structures,2002,24:309-323
9
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
設(shè)計(jì)(論文)題目: 磁流變式汽車減振器設(shè)計(jì)
院 系 名 稱: 汽車與交通工程學(xué)院
專 業(yè) 班 級(jí): 車輛工程
學(xué) 生 姓 名: 潘鵬山
導(dǎo) 師 姓 名: 安永東
開 題 時(shí) 間: 2011.2.28
指導(dǎo)委員會(huì)審查意見:
簽字: 年 月 日
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
學(xué)生姓名
潘鵬山
系部
汽車與交通工程學(xué)院
專業(yè)、班級(jí)
車輛工程07-11班
指導(dǎo)教師姓名
安永東
職稱
副教授
從事
專業(yè)
車輛工程
是否外聘
□是√否
題目名稱
磁流變式汽車減振器的設(shè)計(jì)
一、 課題研究現(xiàn)狀、選題目的和意義
(1)課題研究現(xiàn)狀
磁流變阻尼器因其具有結(jié)構(gòu)簡單、控制方便、響應(yīng)速度快、消耗功率小、抗污染能力強(qiáng)和輸出力大、阻尼力連續(xù)可調(diào)等優(yōu)點(diǎn),它利用了磁流變液在磁場(chǎng)作用下能在毫秒級(jí)的時(shí)間內(nèi)從牛頓流體轉(zhuǎn)變成具有一定屈服強(qiáng)度的黏塑性體的智能特性,僅需要很小的能量輸入就能產(chǎn)生較大的阻尼力,尤其適合在土木結(jié)構(gòu)的抗風(fēng)抗震中應(yīng)用。在汽車、機(jī)械、土木建筑等的振動(dòng)領(lǐng)域得到了廣泛的應(yīng)用和發(fā)展?,F(xiàn)有的磁流變阻尼器的工作模式有閥式、剪切式、擠壓式、剪切閥式。磁流變阻尼器已成為汽車半主動(dòng)懸架系統(tǒng)中的研究熱點(diǎn)。
近幾年,對(duì)于磁流變阻尼器研究主要關(guān)于兩個(gè)方面,對(duì)磁流變阻尼器優(yōu)化方面的研究和對(duì)磁流變阻尼器控制策略的研究。
對(duì)于磁流變阻尼器研究關(guān)于優(yōu)化方面的內(nèi)容主要集中于結(jié)構(gòu)參數(shù)的優(yōu)化以及磁路優(yōu)化等方面?,F(xiàn)在就這兩方面內(nèi)容對(duì)其進(jìn)行介紹。
1)磁流變阻尼器結(jié)構(gòu)參數(shù)優(yōu)化
為了提高磁流變阻尼器的可調(diào)范圍和可控力值,需要對(duì)磁流變阻尼器的結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化,以使其阻尼性能達(dá)到最佳。在早期的磁流變阻尼器的研究中,主要對(duì)單一目標(biāo)函數(shù)進(jìn)行優(yōu)化,以得到最佳的結(jié)構(gòu)關(guān)鍵尺寸,如間隙大小,有效長度及線圈匝數(shù)等。
西北工業(yè)大學(xué)的鄧長華等人對(duì)雙出桿磁流變阻尼器結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化,其僅選擇可調(diào)范圍作為目標(biāo)函數(shù),利用MATLAB優(yōu)化出線圈匝數(shù)、阻尼通道厚度以及阻尼通道長度。
西安交通大學(xué)的吳龍等人從磁流變阻尼器設(shè)計(jì)原理入手,采用Bingham軸對(duì)稱理論模型對(duì)小型單出桿式磁流變阻尼器進(jìn)行了結(jié)構(gòu)參數(shù)的優(yōu)化研究。其選取推導(dǎo)出的有效長度公式為目標(biāo)函數(shù),利用MATLAB優(yōu)化工具箱進(jìn)行優(yōu)化,確定相關(guān)參數(shù)值代回原阻尼力及可調(diào)范圍公式反復(fù)比對(duì),已達(dá)到最佳效果。
對(duì)于阻尼力或可調(diào)范圍的這種單目標(biāo)優(yōu)化,涉及到的設(shè)計(jì)參數(shù)比較少,在計(jì)算過程上僅從磁學(xué)角度考慮結(jié)構(gòu)參數(shù)對(duì)阻尼力的影響,優(yōu)化的效果上講,具有一定的局限性。近幾年的結(jié)果優(yōu)化中出現(xiàn)了一些針對(duì)阻尼力和可調(diào)范圍等從力學(xué)和磁學(xué)雙重角度考慮的多目標(biāo)優(yōu)化方法。
比較早的是煙臺(tái)大學(xué)的陳義寶等人采用灰色系統(tǒng)理論的關(guān)聯(lián)度計(jì)算方法,對(duì)磁流變阻尼器的結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化設(shè)計(jì),其選定阻尼力可調(diào)范圍、粘性阻尼力和可調(diào)阻尼力作為優(yōu)化目標(biāo),利用優(yōu)化軟件庫OPB2對(duì)設(shè)計(jì)主要參數(shù)進(jìn)行多目標(biāo)參數(shù)優(yōu)化。
哈爾濱工業(yè)大學(xué)的關(guān)新春等人以阻尼力和可調(diào)信數(shù)為優(yōu)化目標(biāo),以磁流變阻尼器關(guān)鍵結(jié)構(gòu)參數(shù)為變量,;利用多目標(biāo)遺傳算法,在優(yōu)化軟件modeFRONTIER中對(duì)磁流變阻尼器進(jìn)行優(yōu)化設(shè)計(jì)和分析。以及南京理工大學(xué)的張莉等人,安徽科技學(xué)院的易勇等人運(yùn)用相應(yīng)的軟件工具和方法,對(duì)磁流變阻尼器進(jìn)行了相應(yīng)的多目標(biāo)優(yōu)化方面的研究。
2)磁流變阻尼器磁路優(yōu)化
磁流變阻尼器設(shè)計(jì)磁路的目的是將磁通量引導(dǎo)并集中到環(huán)形間隙中的活性磁流變液區(qū),最大限度地降低磁芯材料及非工作磁流變液區(qū)中的能量損失,保證足夠的橫截面積降低磁芯材料中的磁阻。在磁路的設(shè)計(jì)過程中,所得到的結(jié)構(gòu)參數(shù)結(jié)果是多樣化的,而且每種結(jié)果使磁流變減振器發(fā)揮的效能并不一樣,所以必須對(duì)結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化,使磁路系統(tǒng)發(fā)揮最佳的功能。目前,多數(shù)采用ANSYS有限元軟件進(jìn)行分析,得到優(yōu)化前后的磁感應(yīng)強(qiáng)度圖,優(yōu)化后的磁路系統(tǒng)在阻尼環(huán)內(nèi)的磁場(chǎng)強(qiáng)度基本都垂直于磁流變液流動(dòng)的方向,有效地減少漏磁,提高了磁場(chǎng)利用率。除此之外,西安石油大學(xué)的王治國等人用正交試驗(yàn)方法對(duì)磁流變阻尼磁路進(jìn)行了優(yōu)化方面的研究,重慶工學(xué)院的富麗娟等人對(duì)電控信號(hào)變化的響應(yīng)快、控制范圍大為設(shè)計(jì)目標(biāo)用最小二乘法對(duì)磁流變阻尼器磁路進(jìn)行了優(yōu)化方面的研究等等。
近年來,國內(nèi)外學(xué)者應(yīng)用控制理論提供的方法在汽車半主動(dòng)懸架控制系統(tǒng)的研究反面做了大量的研究工作。汽車半主動(dòng)懸架是一個(gè)非線性系統(tǒng),動(dòng)力學(xué)模型參數(shù)具有不確定性,考慮到半主動(dòng)懸架控制的實(shí)時(shí)性,提高系統(tǒng)的響應(yīng)時(shí)間是非常關(guān)鍵的,不宜采用過于復(fù)雜的算法。目前,在汽車半主動(dòng)懸架中應(yīng)用的懸架主要有以下幾種:
1)天棚阻尼控制方法
天棚阻尼控制方法是1974年由美國Karnopp教授提出的一種半主動(dòng)懸架基本控制方法。該方法的原理是在車身上施加一個(gè)正比于車身絕對(duì)速度的阻尼力,通過合理選擇相關(guān)參數(shù),可徹底清除系統(tǒng)共振現(xiàn)象。天棚阻尼控制法簡單、易行,但由于粘度特性的限制,理想的天棚控制效果是無法實(shí)現(xiàn)的,且阻尼系數(shù)的頻繁、小連續(xù)切換要求阻尼器具有較寬的頻率。
2)自適應(yīng)控制方法
自適應(yīng)控制研究始于80年代初,由于車輛懸架模型有誤差,存在非線性和受控車輛結(jié)構(gòu)參數(shù)變化,許多學(xué)者認(rèn)識(shí)到自適應(yīng)控制的必要性。基于線性時(shí)不變控制方法能使系統(tǒng)當(dāng)參數(shù)發(fā)生變化時(shí),其性能趨于理性的系統(tǒng)。它主要用于受控對(duì)象及其參數(shù)存在嚴(yán)重不確定性的情況。
3)最優(yōu)控制方法
最優(yōu)控制是半主動(dòng)懸架控制中應(yīng)用比較廣泛的一種方法。通過建立半主動(dòng)懸架系統(tǒng)的狀態(tài)方程,考慮不同的性能指標(biāo)并提出控制目標(biāo)函數(shù),來分析當(dāng)汽車受到路面隨機(jī)激勵(lì)時(shí),半主動(dòng)懸架性能指標(biāo)的最優(yōu)控制方案。應(yīng)用于車輛懸架系統(tǒng)的最優(yōu)控制可以分為線性最優(yōu)控制,最優(yōu)預(yù)報(bào)控制等等。
4)智能控制方法
智能控制是一個(gè)新興的研究領(lǐng)域,善于解決那些傳統(tǒng)方法難解決的復(fù)雜系統(tǒng)的控制問題,并具有較強(qiáng)的容錯(cuò)能力、學(xué)習(xí)能力、自適應(yīng)能力和自組織能力,是一類無需人為干預(yù)就能獨(dú)立地驅(qū)動(dòng)智能機(jī)器,實(shí)現(xiàn)其目標(biāo)的自動(dòng)控制。它研究的對(duì)象不是被控對(duì)象而是控制器本身。智能控制主要包括模糊控制、神經(jīng)網(wǎng)絡(luò)控制以及遺傳算法控制等。
(2)選題目的和意義
汽車在行駛過程中,由于路面的不平坦,導(dǎo)致作用于車輪上的垂直反力、縱向反力和側(cè)向反力起伏波動(dòng),通過懸架傳遞到車身,從而產(chǎn)生振動(dòng)與沖擊。這些振動(dòng)與沖擊傳到車架與車身時(shí)可能引起汽車機(jī)件的早期損壞,傳給乘員和貨物時(shí),將使乘員感到極不舒適,貨物也可能受損傷,嚴(yán)重影響車輛的平順性和操縱穩(wěn)定性以及車輛零部件的疲勞壽命。為了緩解沖擊,在汽車懸架中裝有彈性元件,但彈性系統(tǒng)在沖擊時(shí)產(chǎn)生振動(dòng)。持續(xù)的振動(dòng)易使乘員感到不舒適和疲勞,因此汽車懸架中裝有阻尼器。
傳統(tǒng)被動(dòng)懸架不能適應(yīng)復(fù)雜的道路激勵(lì)和不斷變化的行駛工況,因此開發(fā)一種能夠根據(jù)路面情況和車輛運(yùn)行狀態(tài)的變化、實(shí)時(shí)調(diào)節(jié)其特性,既能保證汽車的操縱穩(wěn)定性,又能使汽車的乘坐舒適性達(dá)到最佳狀態(tài)的智能懸架系統(tǒng)勢(shì)在必行。今年來,半主動(dòng)懸架系統(tǒng),能夠大幅度提高車輛的乘坐舒適性和操縱穩(wěn)定性,非常適合用于車輛懸架系統(tǒng)的特點(diǎn),使對(duì)它的研究有了較大發(fā)展。
磁流變阻尼器作為半主動(dòng)懸架的執(zhí)行元件,以磁流變液為介質(zhì),通過對(duì)輸入電流的控制,使其外加磁場(chǎng)強(qiáng)度發(fā)生變化,進(jìn)而可在毫秒級(jí)使磁流變液的磁流性能發(fā)生變化,實(shí)現(xiàn)流體和半固體之間的轉(zhuǎn)變,從而能夠提供可控阻尼力,因此,對(duì)雙筒式磁流變阻尼器的設(shè)計(jì)以及結(jié)構(gòu)優(yōu)化的理論研究十分的必要。
分析磁流變減振器的工作模式,結(jié)合現(xiàn)有汽車液壓筒式減振器的結(jié)構(gòu)和工作特點(diǎn),對(duì)磁流變減振器進(jìn)行結(jié)構(gòu)設(shè)計(jì),對(duì)磁流變減振器的磁路進(jìn)行設(shè)計(jì)。
二、設(shè)計(jì)(論文)的基本內(nèi)容、擬解決的主要問題
1、主要設(shè)計(jì)內(nèi)容
(1)磁流變減振器的磁路設(shè)計(jì);
(2)減振器的結(jié)構(gòu)設(shè)計(jì);
(3)對(duì)減振器的性能進(jìn)行分析,磁流變減振器進(jìn)行性能仿真,分析仿真結(jié)果。
2、擬解決的主要問題
(1)設(shè)計(jì)是在利用簡化模型設(shè)計(jì)出磁路結(jié)構(gòu)的基礎(chǔ)上,對(duì)減振器進(jìn)行磁飽和分析。
(2)確定減振器幾個(gè)主要結(jié)構(gòu)尺寸對(duì)磁飽和現(xiàn)象的影響,在此基礎(chǔ)上對(duì)磁路結(jié)構(gòu)尺寸進(jìn)行優(yōu)化,以避免磁飽和現(xiàn)象過早發(fā)生,提高減振器的阻尼力可調(diào)范圍。
(3)磁流變減振器結(jié)構(gòu)材料的選擇。
(4)磁流變阻尼器的動(dòng)態(tài)范圍的確定。
(5)阻尼間隙的選取對(duì)減振器性能的影響,阻尼通道有效長度的選取對(duì)減振器性能的影響。
調(diào)查研究
三、技術(shù)路線(研究方法)
減振器工作要求、主要技術(shù)指標(biāo)的分析
數(shù)據(jù)計(jì)算、分析、處理
磁流變減振器結(jié)構(gòu)設(shè)計(jì)、磁路設(shè)計(jì)
基于Bingham模型的平板結(jié)構(gòu)模型
工作缸外徑、內(nèi)徑以及活塞桿直徑基本尺寸確定。阻尼間隙、活塞有效長度、線圈匝數(shù)確定
磁流變減振器性能進(jìn)行性能優(yōu)化仿真
一定振幅和頻率正弦激勵(lì)下的阻尼力-位移曲線、阻尼力-速度曲線
確定最終設(shè)計(jì)結(jié)果
四、進(jìn)度安排
1、進(jìn)行文獻(xiàn)檢索,查看相關(guān)資料,對(duì)課題的基本內(nèi)容有一定的認(rèn)識(shí)了解。完成開題報(bào)告。第1-2周(2月28日—3月11日)
2、初步確定設(shè)計(jì)的總體方案,討論確定方案;對(duì)磁流變減振器進(jìn)行初步設(shè)計(jì)和選取。第3-6周(3月14日—4月8日)
3、提交設(shè)計(jì)草稿,進(jìn)行討論,修正。第7周(4月11日—4月15日)
4、詳細(xì)設(shè)計(jì)液壓系統(tǒng),設(shè)計(jì)非標(biāo)件,繪制減振器裝配圖及零件圖。第8-12周(4月18日—5月20日)
5、提交正式設(shè)計(jì),教師審核。第13-14周(5月23日—6月3日)
6、按照審核意見進(jìn)行修改。第15周(6月6日—6月10日)
7、整理所有材料,裝訂成冊(cè),準(zhǔn)備答辯。第16周(6月13日—6月17日)
五、參考文獻(xiàn)
[1]賀建民等,磁流變減振器的分析與設(shè)計(jì),第五屆全國磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議,2008.10
[2]徐偉,汽車懸架阻尼匹配研究機(jī)減振器設(shè)計(jì),農(nóng)也裝備與車輛工程,2009.6
[3]李連進(jìn),磁流變阻尼器的參數(shù)優(yōu)化與特征仿真,蘭州理工大學(xué)學(xué)報(bào),2006.4
[4]廖昌榮汽車懸架系統(tǒng)磁流變阻尼器研究[學(xué)位論文]2001
[5]王棋民.徐國梁.金建峰磁流變液的流變性能及其工程應(yīng)用[期刊論文]-中國機(jī)械工程2002(3)
[6]關(guān)新春,歐進(jìn)萍.磁流變耗能器的阻尼力模型及其參數(shù)確定,2001,20(1):5-8
[7]王金鋼,等.磁流變阻尼器阻尼性能仿真研究[J].石油機(jī)械,2006,34(10):19-23
[8]蒙延佩,等.汽車磁流變阻尼器磁路設(shè)計(jì)及相關(guān)問題[J].功能材料,2006(5):768-770
[9]司誥,等.磁流變阻尼器管道流動(dòng)特性研究[J].功能材料,2006(5):831-833
[10]蔣建東.梁錫昌.張博適用于車輛的旋轉(zhuǎn)式磁流變阻尼器研究[期刊論文]-汽車工程2005(1)
[11]徐永興.曹民.磁流變減振器優(yōu)化的設(shè)計(jì)計(jì)算[J].上海交通大學(xué)學(xué)報(bào),2004,38(8):1423-1427
[12]王乾龍.王昊.李延成磁流變阻尼器設(shè)計(jì)中的基本問題分析[期刊論文]-機(jī)床與液壓2004(11)
[13]郭大蕾車輛懸架振動(dòng)的神經(jīng)網(wǎng)絡(luò)半主動(dòng)控制[學(xué)位論文]2001
[14]Lai C Y,Liao W H.Vibration Control of a Suspension System Via a Magnetorheo logical FluidDamper.Journal of Vibration and Control,2002,8(4):527-547.
[15]Yang G,Spencer Jr BF,Carlson JD,et al.Large scale MR fluid Damper: Modeling and Dyamic Performance Considerations.Engineering Structures,2002,24:309-323
六、備注
指導(dǎo)教師意見:
簽字: 年 月 日
畢業(yè)設(shè)計(jì)指導(dǎo)教師評(píng)分表
學(xué)生姓名
潘鵬山
院系
汽車與交通工程學(xué)院
專業(yè)、班級(jí)
車輛工程B07-11班
指導(dǎo)教師姓名
安永東
職稱
副教授
從事
專業(yè)
車輛工程
是否外聘
□是■否
題目名稱
磁流變式汽車減振器設(shè)計(jì)
序號(hào)
評(píng) 價(jià) 項(xiàng) 目
滿分
得分
1
選題與專業(yè)培養(yǎng)目標(biāo)的符合程度,綜合訓(xùn)練情況;題目難易度
10
2
題目工作量;題目與工程實(shí)踐、社會(huì)實(shí)際、科研與實(shí)驗(yàn)室建設(shè)等的結(jié)合程度
10
3
綜合運(yùn)用知識(shí)能力(設(shè)計(jì)涉及學(xué)科范圍,內(nèi)容深廣度及問題難易度);應(yīng)用文獻(xiàn)資料能力
15
4
設(shè)計(jì)(實(shí)驗(yàn))能力;計(jì)算能力(數(shù)據(jù)運(yùn)算與處理能力);外文應(yīng)用能力
20
5
計(jì)算機(jī)應(yīng)用能力;對(duì)實(shí)驗(yàn)結(jié)果的分析能力(或綜合分析能力、技術(shù)經(jīng)濟(jì)分析能力)
10
6
插圖(圖紙)質(zhì)量;設(shè)計(jì)說明書撰寫水平;設(shè)計(jì)的實(shí)用性與科學(xué)性;創(chuàng)新性
20
7
設(shè)計(jì)規(guī)范化程度(設(shè)計(jì)欄目齊全合理、SI制的使用等)
5
8
科學(xué)素養(yǎng)、學(xué)習(xí)態(tài)度、紀(jì)律表現(xiàn);畢業(yè)論文進(jìn)度
10
得 分
X=
評(píng) 語:(參照上述評(píng)價(jià)項(xiàng)目給出評(píng)語,注意反映該論文的特點(diǎn))
工作態(tài)度: 好□ 較好□ 一般□ 較差□ 很差□
研究能力或設(shè)計(jì)能力:強(qiáng)□ 較強(qiáng)□ 一般□ 較弱□ 很弱□
工作量: 大□ 較大□ 適中□ 較少□ 很少□
說明書規(guī)范性: 好□ 較好□ 一般□ 較差□ 很差□
圖紙規(guī)范性: 好□ 較好□ 一般□ 較差□ 很差□
成果質(zhì)量(設(shè)計(jì)方案、設(shè)計(jì)方法、正確性)
好□ 較好□ 一般□ 較差□ 很差□
其他:
指導(dǎo)教師簽字: 年 月 日
畢業(yè)設(shè)計(jì)評(píng)閱人評(píng)分表
學(xué)生
姓名
潘鵬山
專業(yè)
班級(jí)
車輛工程B07-11班
指導(dǎo)教
師姓名
安永東
職稱
副教授
題目
磁流變式汽車減振器設(shè)計(jì)
評(píng)閱組或預(yù)答辯組成員姓名
出席
人數(shù)
序號(hào)
評(píng) 價(jià) 項(xiàng) 目
滿分
得分
1
選題與專業(yè)培養(yǎng)目標(biāo)的符合程度,綜合訓(xùn)練情況;題目難易度
10
2
題目工作量;題目與工程實(shí)踐、社會(huì)實(shí)際、科研與實(shí)驗(yàn)室建設(shè)等的結(jié)合程度
10
3
綜合運(yùn)用知識(shí)能力(設(shè)計(jì)涉及學(xué)科范圍,內(nèi)容深廣度及問題難易度);應(yīng)用文獻(xiàn)資料能力
15
4
設(shè)計(jì)(實(shí)驗(yàn))能力;計(jì)算能力(數(shù)據(jù)運(yùn)算與處理能力);外文應(yīng)用能力
25
5
計(jì)算機(jī)應(yīng)用能力;對(duì)實(shí)驗(yàn)結(jié)果的分析能力(或綜合分析能力、技術(shù)經(jīng)濟(jì)分析能力)
15
6
插圖(圖紙)質(zhì)量;設(shè)計(jì)說明書撰寫水平;設(shè)計(jì)的實(shí)用性與科學(xué)性;創(chuàng)新性
20
7
設(shè)計(jì)規(guī)范化程度(設(shè)計(jì)欄目齊全合理、SI制的使用等)
5
得 分
Y=
評(píng) 語:(參照上述評(píng)價(jià)項(xiàng)目給出評(píng)語,注意反映該論文的特點(diǎn))
回答問題: 正確□ 基本正確□ 基本不正確□ 不能回答所提問題□
研究能力或設(shè)計(jì)能力:強(qiáng)□ 較強(qiáng)□ 一般□ 較弱□ 很弱□
工作量: 大□ 較大□ 適中□ 較少□ 很少□
說明書規(guī)范性: 好□ 較好□ 一般□ 較差□ 很差□
圖紙規(guī)范性: 好□ 較好□ 一般□ 較差□ 很差□
成果質(zhì)量(設(shè)計(jì)方案、設(shè)計(jì)方法、正確性)
好□ 較好□ 一般□ 較差□ 很差□
其他:
評(píng)閱人或預(yù)答辯組長簽字: 年 月 日
注:畢業(yè)設(shè)計(jì)(論文)評(píng)閱可以采用2名評(píng)閱教師評(píng)閱或集體評(píng)閱或預(yù)答辯等形式。
畢業(yè)設(shè)計(jì)答辯評(píng)分表
學(xué)生
姓名
潘鵬山
專業(yè)
班級(jí)
車輛工程B07-11班
指導(dǎo)
教師
安永東
職 稱
副教授
題目
磁流變式汽車減振器設(shè)計(jì)
答辯
時(shí)間
月 日 時(shí)
答辯組
成員姓名
出席
人數(shù)
序號(hào)
評(píng) 審 指 標(biāo)
滿
分
得
分
1
選題與專業(yè)培養(yǎng)目標(biāo)的符合程度,綜合訓(xùn)練情況,題目難易度、工作量、與實(shí)際的結(jié)合程度
10
2
設(shè)計(jì)(實(shí)驗(yàn))能力、對(duì)實(shí)驗(yàn)結(jié)果的分析能力、計(jì)算能力、綜合運(yùn)用知識(shí)能力
10
3
應(yīng)用文獻(xiàn)資料、計(jì)算機(jī)、外文的能力
10
4
設(shè)計(jì)說明書撰寫水平、圖紙質(zhì)量,設(shè)計(jì)的規(guī)范化程度(設(shè)計(jì)欄目齊全合理、SI制的使用等)、實(shí)用性、科學(xué)性和創(chuàng)新性
15
5
畢業(yè)設(shè)計(jì)答辯準(zhǔn)備情況
5
6
畢業(yè)設(shè)計(jì)自述情況
20
7
畢業(yè)設(shè)計(jì)答辯回答問題情況
30
總 分
Z=
答辯過程記錄、評(píng)語:
自述思路與表達(dá)能力:好□ 較好□ 一般□ 較差□ 很差□
回答問題: 正確□ 基本正確□ 基本不正確□ 不能回答所提問題□
研究能力或設(shè)計(jì)能力:強(qiáng)□ 較強(qiáng)□ 一般□ 較弱□ 很弱□
工作量: 大□ 較大□ 適中□ 較少□ 很少□
說明書規(guī)范性: 好□ 較好□ 一般□ 較差□ 很差□
圖紙規(guī)范性: 好□ 較好□ 一般□ 較差□ 很差□
成果質(zhì)量(設(shè)計(jì)方案、設(shè)計(jì)方法、正確性)
好□ 較好□ 一般□ 較差□ 很差□
其他:
答辯組長簽字: 年 月 日
畢業(yè)設(shè)計(jì)(論文)成績?cè)u(píng)定表
學(xué)生姓名
潘鵬山
性別
男
院系
汽車與交通工程學(xué)院
專業(yè)
車輛工程
班級(jí)
B07-11班
設(shè)計(jì)(論文)題目
磁流變式汽車減振器設(shè)計(jì)
平時(shí)成績?cè)u(píng)分(開題、中檢、出勤)
指導(dǎo)教師姓名
職稱
指導(dǎo)教師
評(píng)分(X)
評(píng)閱教師姓名
職稱
評(píng)閱教師
評(píng)分(Y)
答辯組組長
職稱
答辯組
評(píng)分(Z)
畢業(yè)設(shè)計(jì)(論文)成績
百分制
五級(jí)分制
答辯委員會(huì)評(píng)語:
答辯委員會(huì)主任簽字(蓋章): 院系公章: 年 月 日
注:1、平時(shí)成績(開題、中檢、出勤)評(píng)分按十分制填寫,指導(dǎo)教師、評(píng)閱教師、答辯組評(píng)分按百分制填寫,畢業(yè)設(shè)計(jì)(論文)成績百分制=W+0.2X+0.2Y+0.5Z
2、評(píng)語中應(yīng)當(dāng)包括學(xué)生畢業(yè)設(shè)計(jì)(論文)選題質(zhì)量、能力水平、設(shè)計(jì)(論文)水平、設(shè)計(jì)(論文)撰寫質(zhì)量、學(xué)生在畢業(yè)設(shè)計(jì)(論文)實(shí)施或?qū)懽鬟^程中的學(xué)習(xí)態(tài)度及學(xué)生答辯情況等內(nèi)容的評(píng)價(jià)。
優(yōu)秀畢業(yè)設(shè)計(jì)(論文)推薦表
題 目
磁流變式汽車減振器設(shè)計(jì)
類別
學(xué)生姓名
潘鵬山
院(系)、專業(yè)、班級(jí)
汽車與交通工程學(xué)院車輛工程07-11
指導(dǎo)教師
安永東
職 稱
副教授
設(shè)計(jì)成果明細(xì):
答辯委員會(huì)評(píng)語:
答辯委員會(huì)主任簽字(蓋章): 院、系公章: 年 月 日
備 注:
注:“類別”欄填寫畢業(yè)論文、畢業(yè)設(shè)計(jì)、其它
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
摘 要
磁流變阻尼器作為優(yōu)秀的半主動(dòng)控制器件,已被廣泛運(yùn)用于各種場(chǎng)合的振動(dòng)控制。為改善汽車的乘坐舒適性和行駛安全性,提出一種汽車磁流變半主動(dòng)懸架的控制策略。采用磁流變減振器的車輛半主動(dòng)懸架系統(tǒng),由于磁流變阻尼器結(jié)構(gòu)簡單、能耗低、反應(yīng)迅速且阻尼可調(diào),正在成為新型車輛懸掛的發(fā)展方向,本文基于磁流變可控流體本構(gòu)關(guān)系的Bingham模型,對(duì)影響車用磁流變減振器的阻尼力的各種因素進(jìn)行了綜合分析。本文中介紹車用阻尼器的應(yīng)用與研究現(xiàn)狀;磁流變液的組成及磁流變效應(yīng)基本原理,分析磁流變減振器的工作原理及其數(shù)學(xué)模型,結(jié)合國內(nèi)外最新研究成果,綜述用于汽車懸架的MR減振器的仿真模型、控制方法。磁流變液作為流變學(xué)特性可控的一種智能材料,應(yīng)用十分的廣泛。
關(guān)鍵詞:半主動(dòng)懸架;磁流變效應(yīng);磁流變減振器;仿真模型;磁流變液
ABSTRACT
Magnetorheological damper is one of the most excellent new devices for semi-active control.A control strategy of automobile magneto-rheological semi-active suspension was proposed to improve the riding comfortableness and traveling safety of automobile.Mage- torhological dampers will be an ideal componet of semi-active vibration control in vehicle suspension system for reasons of structure,small volume,energy saving,rapid response and smooth damping.In this paper,based on Bingham model,the damping force of a MRF da- mper is analyzed.And all the factors that affect the damping force of an MRF damper are discussed.In addition the application and research status of automobile damper were intro- duce as well as the principle of magneto-rheological effect and the composition of the mag- neto-rheological fluid.Working principles and models of the automobile magneto-rheologi- acl damper was analyzed and the future focus was discussed after summaring the simulation models,control method and testing technology of automobile mageneto-rheologiacl damper of automobile suspensionAs a kind of controllable smart material,magneto-rheological fluid has gained the extensive attention.
Key words: Semi-active suspension;Magneto-rheological effect;Magneto-rheological damper;Simulation model;Magneto-rheologica fluid
I
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
目 錄
摘要 ?
Abstract Π
第1章 緒論 1
1.1 概述 1
1.2 磁流變液的研究 1
1.3 磁流變阻尼器研究現(xiàn)狀 2
1.4 研究的主要內(nèi)容 3
第2章 磁流變阻尼器的力學(xué)模型 5
2.1磁流變液效應(yīng)及流變機(jī)理 5
2.2 磁流變阻尼器工作模式 6
2.3 參數(shù)計(jì)算模型 7
2.4 本章小結(jié) 9
第3章 磁流變阻尼器的設(shè)計(jì) 11
3.1 磁路設(shè)計(jì)的影響因素 10
3.1.1密封件的選擇 10
3.1.2 漏磁分析 11
3.1.3磁性材料的選擇 12
3.1.4退磁 13
3.1.5磁流變阻尼器的動(dòng)態(tài)范圍 13
3.1.6阻尼間隙的選取對(duì)阻尼器性能的影響 13
3.1.7阻尼通道有效長度的選取對(duì)阻尼器性能的影響 13
3.1.8磁路結(jié)構(gòu)的分析 14
3.2磁流變減振器線圈的設(shè)計(jì) 14
3.3磁流變減振器的結(jié)構(gòu)設(shè)計(jì) 15
3.3.1結(jié)構(gòu)方案的確定 15
3.3.2磁流變減振器結(jié)構(gòu)優(yōu)點(diǎn) 16
3.4磁流變減振器磁路的設(shè)計(jì) 16
3.4.1有關(guān)參數(shù)的初步確定 16
3.4.2已有參數(shù)的確定 17
3.5磁路相關(guān)參數(shù)的計(jì)算 19
3.5.1 磁路的計(jì)算 19
3.6 工作缸的計(jì)算 21
3.7 本章小結(jié) 22
第4章 磁流變減振器基于Matlab的仿真分析 24
4.1減振器的阻尼力計(jì)算模型 24
4.2磁流變減振器的仿真分析 28
4.3本章小結(jié) 29
結(jié) 論 31
參考文獻(xiàn) 32
致 謝 33
附 錄 34
附錄A外文文獻(xiàn)原文 34
附錄B外文文獻(xiàn)翻譯 37
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
第1章 緒 論
1.1 概述
汽車在行駛過程中,由于路面的不平坦,導(dǎo)致作用于車輪上的垂直反力、縱向反力和側(cè)向反力起伏波動(dòng),通過懸架傳遞到車身,從而產(chǎn)生振動(dòng)和沖擊。這些振動(dòng)和沖擊傳到車架與車身時(shí)可能引起汽車機(jī)件的早期損壞,傳給乘員和貨物時(shí),將使乘員感到極不舒服,貨物也可能受損傷,嚴(yán)重影響車輛的平順性和操縱穩(wěn)定性以及車輛零部件的疲勞壽命。為了緩解沖擊,在汽車懸架中裝有彈性元件,但彈性系統(tǒng)在沖擊時(shí)產(chǎn)生振動(dòng)。持續(xù)的振動(dòng)易使乘員感到不舒適和疲勞,因此汽車懸架中裝有阻尼器。
傳統(tǒng)被動(dòng)懸架不能適應(yīng)復(fù)雜的道路激勵(lì)和不斷變化的行駛工況,因此開發(fā)一種能夠根據(jù)路面情況和車輛運(yùn)行狀態(tài)的變化、實(shí)時(shí)調(diào)節(jié)其特性,既能保證汽車的操縱穩(wěn)定性,又能使汽車的乘坐舒適性達(dá)到最佳的狀態(tài)的智能懸架系統(tǒng)勢(shì)在必行。近年來,半主動(dòng)控制懸架系統(tǒng),能夠大幅度提高車輛的乘坐舒適性和操縱穩(wěn)定性,非常適合用于車輛懸架系統(tǒng)的特點(diǎn),使對(duì)它的研究有了較大發(fā)展。
磁流變阻尼器作為半主動(dòng)控制懸架的執(zhí)行元件,以磁流變液為介質(zhì),通過對(duì)輸入電流的控制,使其對(duì)外加磁場(chǎng)強(qiáng)度發(fā)生改變,進(jìn)而可在毫秒級(jí)使磁流變液的流變性能發(fā)生變化,實(shí)現(xiàn)流體和半固體之間的轉(zhuǎn)變,從而能夠提供可控阻尼力,其具有結(jié)構(gòu)簡單、控制方便、相應(yīng)迅速、消耗功率小和輸出力大等優(yōu)點(diǎn)。目前國內(nèi)外對(duì)雙筒式磁流變阻尼器研究內(nèi)容較少,因此,對(duì)雙筒式磁流變阻尼器的設(shè)計(jì)以十分必要。
1.2 磁流變液的研究
所謂磁流變液(Magnetorheological Fluid, MFR),是一種在外加磁場(chǎng)的作用下起粘性和塑性等流變特性發(fā)生急劇變化的材料。其基本特征是在外加磁場(chǎng)的作用下載毫秒的時(shí)間內(nèi)能夠快速、可逆地從自由流動(dòng)的液態(tài)轉(zhuǎn)變?yōu)榘牍腆w,并且呈現(xiàn)可控的屈服強(qiáng)度。
磁流變液主要由三部分組成,他們分別為軟磁性顆粒、載液以及為了防止磁性顆粒沉降而添加的在總組成成分中所占比例很少的添加劑。
1) 軟磁性顆粒
軟磁性顆粒主要由鐵鈷合金、鐵鎳合金、羥基鐵等常規(guī)的性能優(yōu)良的顆粒,使用最多的磁性顆粒為羥基鐵粉,因?yàn)樗枪I(yè)化生產(chǎn),產(chǎn)量大、價(jià)格便宜,一般成球狀,直徑尺寸為1-10微米,其具有如下特點(diǎn):
(1)高磁導(dǎo)率,這可以使顆粒在較小的外磁場(chǎng)下,便可磁化成具有較大磁能的顆粒,從而產(chǎn)生較大的剪切屈服強(qiáng)度,以滿足磁流變液低能耗的性能指標(biāo);
(2)低磁矯頑力,即具有良好的退磁能力,基本上不存在剩磁,這是磁流變液可以恢復(fù)零磁場(chǎng)狀態(tài)的要求;
(3)體積小、內(nèi)聚力?。?
(4)具有高飽和磁化強(qiáng)度。
2)載液
可用作載液的液體有硅油、礦物油、合成油、水合乙二醇等,對(duì)載液的要求是溫度穩(wěn)定性好、非易燃,且不會(huì)造成污染,其具有一下特征:
(1)高沸點(diǎn)、低凝固點(diǎn),這可以保證磁流變液有較高的工作溫度范圍,在工作過程中,使磁流變的物理、化學(xué)性能穩(wěn)定;
(2)高密度,縮小載液體與磁極化粒子的密度差解決磁流變液沉淀問題的最有效的方法;
(3)低粘度,確保磁流變液具有零磁場(chǎng)粘度低的要求,使磁流變器件具有更大的調(diào)劑范圍;
(4)化學(xué)穩(wěn)定性好;
(5)具備較高的擊穿磁場(chǎng);
(6)無毒、無異味、價(jià)格低廉。
1.3 磁流變阻尼器研究現(xiàn)狀
磁流變阻尼器因其具有結(jié)構(gòu)簡單、控制方便、響應(yīng)迅速、消耗功率小、抗污染能力強(qiáng)和輸出力大、阻尼力連續(xù)可調(diào)等優(yōu)點(diǎn),在汽車、機(jī)械、土木建筑等的振動(dòng)領(lǐng)域得到了廣泛的應(yīng)用和發(fā)展。目前,磁流變阻尼器已取得了廣泛地發(fā)展和應(yīng)用,其結(jié)構(gòu)形式的研發(fā)也層出不窮,根據(jù)設(shè)計(jì)結(jié)構(gòu)出現(xiàn)的時(shí)間順序,可分為常規(guī)磁流變阻尼器、改進(jìn)新型磁流變阻尼器以及全新型磁流變阻尼器。
常規(guī)磁流變阻尼器,即根據(jù)磁流變阻尼器的工作模式而設(shè)計(jì)出,單級(jí)活塞線圈內(nèi)置式磁流變阻尼器。重慶大學(xué)的廖昌榮、余淼等人是國內(nèi)最早研究磁流變阻尼器的研究人員,他們根據(jù)磁流變體的Bingham模型描述,提出了混合工作模式的汽車磁流變減振器的設(shè)計(jì)原理,如圖1.1活塞在工作缸內(nèi)作往復(fù)直線運(yùn)動(dòng),利用線圈產(chǎn)生的磁場(chǎng)來控制磁流變液在阻尼通道中的流動(dòng),對(duì)減振器的阻尼力實(shí)現(xiàn)控制。并且按照長安微型汽車的技術(shù)和磁流變液體的性能設(shè)計(jì)和制作了微型汽車磁流變減振器,并根據(jù)長安微型汽車前懸架減振器的技術(shù)條件對(duì)此進(jìn)行了實(shí)驗(yàn)測(cè)試。
圖1.1 混合模式磁流變阻尼器工作原理
佛山大學(xué)汪建曉以及華南理工大學(xué)王世旺等人研制了一種自定心擠壓式磁流變彈性阻尼器。以上幾種磁流變阻尼器的設(shè)計(jì)都是在磁流變阻尼器幾種工作模式基礎(chǔ)上研制出來的單級(jí)活塞,線圈內(nèi)置換繞的磁流變阻尼器。
哈爾濱工業(yè)大學(xué)的涂奉臣、陳照波等人根據(jù)工程上出現(xiàn)的常規(guī)阻尼器在高頻振動(dòng)是剛度硬化現(xiàn)象,使高頻傳遞率增大而提出一種帶有解耦結(jié)構(gòu)的新型磁流變阻尼器,其結(jié)構(gòu)上的改動(dòng)并不大,只是將活塞與活塞桿分開,然后利用解耦機(jī)構(gòu)將活塞與活塞桿連接起來,其解耦結(jié)構(gòu)由兩個(gè)限位擋板和兩個(gè)螺旋彈簧組成。
南京林業(yè)大學(xué)的徐曉美等人提出了一種線圈繞于工作缸外的新型磁流變阻尼器。為了避免將激勵(lì)線圈繞于工作缸外,磁流變阻尼器中大部分磁力線將平行于磁流變液的流動(dòng)方向,而無法滿足磁流變液產(chǎn)生剪切屈服強(qiáng)度的現(xiàn)象,此結(jié)構(gòu)在工作缸外增加了磁靴結(jié)構(gòu),既減少了漏磁,又引導(dǎo)磁路使磁力線垂直于磁流變液流動(dòng)的方向。寧波大學(xué)的蘇會(huì)強(qiáng)等人根據(jù)磁流變液在磁場(chǎng)作用下可進(jìn)行固-液轉(zhuǎn)換的特點(diǎn),設(shè)計(jì)了一種回轉(zhuǎn)式阻尼器。并建立了相應(yīng)的阻尼器力矩模型。
1.4 研究的主要內(nèi)容
本文主要內(nèi)容是對(duì)普通的汽車用減振器進(jìn)行改進(jìn),在原有的雙筒減振器的基礎(chǔ)上增加上線圈和磁流變液,其主要的結(jié)構(gòu)尺寸工作缸的外徑和內(nèi)徑、活塞的直徑等都沒有發(fā)生變化,在原有的這些數(shù)據(jù)的基礎(chǔ)上加上了線圈和線圈活塞,對(duì)線圈的匝數(shù),工作間隙的大小,磁路的設(shè)計(jì)等方面進(jìn)行了研究和設(shè)計(jì)。在查閱資料的基礎(chǔ)上,選定了工作模式和阻尼器的力學(xué)模型。在給定的工作要求的情況下,對(duì)一些重要的部件進(jìn)行了校核,最后對(duì)設(shè)計(jì)的磁流變減振器進(jìn)行了仿真優(yōu)化。
主要包括對(duì)磁路的設(shè)計(jì)、結(jié)構(gòu)的設(shè)計(jì)和最后的仿真分析。
(1) 磁路的設(shè)計(jì)
在磁流變減振器的設(shè)計(jì)過程中,磁路的設(shè)計(jì)是一個(gè)很重要的環(huán)節(jié),決定了磁流變減振器工作范圍和效率的大小,在磁路的設(shè)計(jì)過程中,還要重視對(duì)材料的選擇,以避免磁阻和漏磁的過大,使減振器不能達(dá)到預(yù)期的低耗和工作范圍寬的目的。選擇合適就算模型,就本身的實(shí)際出發(fā)選擇最優(yōu)的形式,使得減振器在工作過程中能達(dá)到設(shè)計(jì)的要求。
(2) 結(jié)構(gòu)的設(shè)計(jì)
磁流變減振器是基于普通的雙筒減振器改變而來的,其中的外形結(jié)構(gòu)和活塞桿的尺寸都沒有改變,可按照某微型汽車的原始減振器的結(jié)構(gòu)參數(shù)進(jìn)行設(shè)計(jì),不同點(diǎn)在于,內(nèi)部增加了線圈和纏繞線圈的活塞,這些是需要設(shè)計(jì)和計(jì)算的,也是本論文設(shè)計(jì)的又一個(gè)重點(diǎn),基于混合模式的磁流變減振器的基礎(chǔ)上,在活塞上開有若干個(gè)環(huán)槽來增加阻尼力,使減震器的阻尼力增大。
(3) 仿真
基于Bingham基礎(chǔ)上運(yùn)用Matlab進(jìn)行仿真分析,對(duì)最終的參數(shù)進(jìn)行比對(duì)分析,并得出仿真的結(jié)果。
第2章 磁流變阻尼器的力學(xué)模型
2.1磁流變液效應(yīng)及流變機(jī)理
20世紀(jì)40年代Rabinow首次發(fā)現(xiàn)磁流變現(xiàn)象。在零磁場(chǎng)作用下,磁流變液表現(xiàn)為牛頓流體的特征,其剪切應(yīng)力等于粘度與剪切率的乘積,在外加磁場(chǎng)的作用下,磁流變液表現(xiàn)為賓漢姆流體的特征,其剪切應(yīng)力由液體的粘滯力和屈服應(yīng)力兩部分組成,其流變特性的改變表現(xiàn)為屈服應(yīng)力隨磁場(chǎng)強(qiáng)度的增加而單調(diào)增加,而液體的粘度不變,當(dāng)外加磁場(chǎng)達(dá)到某臨界值時(shí),磁流變液停止流動(dòng)達(dá)到固化,當(dāng)去掉外加磁場(chǎng)時(shí),它又恢復(fù)到原來的狀態(tài),其響應(yīng)時(shí)間僅為幾毫秒。磁流變液的這種隨外加磁場(chǎng)強(qiáng)度變化而改變流變特性的現(xiàn)象被稱為磁流變效應(yīng)。
磁流變效應(yīng)是磁流變技術(shù)和磁流變液走向工程應(yīng)用的基礎(chǔ),它具有下列特性:
(1)在外加磁場(chǎng)的作用下,磁流變液的表觀粘度發(fā)生變化的過程是連續(xù)的、無級(jí)的,但這一變化過程是非線性的。
(2)在外加磁場(chǎng)的作用下,某磁場(chǎng)強(qiáng)度下,流體停止流動(dòng)達(dá)到固化,當(dāng)去掉外加磁場(chǎng)時(shí),流體又恢復(fù)到原來的狀態(tài),磁流變體的由液態(tài)轉(zhuǎn)換成固態(tài)是可逆的,若這一轉(zhuǎn)化過程是不可逆的話,他的工程應(yīng)用價(jià)值將會(huì)受到極大的影響。
(3)磁流變效應(yīng)對(duì)雜質(zhì)不敏感。
(4)可以采用低壓,大電流的信號(hào)來控制磁場(chǎng)強(qiáng)度的強(qiáng)弱,從而控制磁流變效應(yīng),這種控制是安全且容易實(shí)現(xiàn)的。
(5)在外加磁場(chǎng)的作用下,磁流變體產(chǎn)生磁流變效應(yīng)的響應(yīng)時(shí)間為毫秒級(jí),這一特性能夠滿足車輛懸架振動(dòng)控制的要求。
(6)磁流變效應(yīng)所需的能耗較低,即使發(fā)生液體與固體之間的轉(zhuǎn)換也不會(huì)吸收或者放出大量的能量,這為磁流變液在車輛工程中的應(yīng)用提供了方便。
(7)在外加磁場(chǎng)的作用下磁流變液體的表觀粘度發(fā)生的變化時(shí)可控制的,這一特性為人們提供了工程應(yīng)用的基礎(chǔ)。
在顯微鏡下觀察可以發(fā)現(xiàn),在零磁場(chǎng)下,磁流變液的顆粒分散是雜亂的,而在磁場(chǎng)作用下分布卻是有規(guī)律的,且沿磁場(chǎng)方向成鏈?zhǔn)鵂钆帕校渥饔迷砣鐖D2.1所示。
圖2.1 磁流變顆粒零磁場(chǎng)下的作用原理圖
這種顆粒在磁場(chǎng)下成鏈的原因存在很多的假說,但具有代表性的為場(chǎng)致偶極矩理論。該理論認(rèn)為在外加磁場(chǎng)的作用下,磁流變體的磁極化是產(chǎn)生磁流變效應(yīng)的原因。而磁流變流體的變稠和產(chǎn)生抗剪屈服現(xiàn)象,也是由于磁場(chǎng)引起的作用力形成的。整個(gè)磁流變效應(yīng)的發(fā)生過程是:磁場(chǎng)作用下分散顆粒發(fā)生磁極化,形成偶極子現(xiàn)象,帶有偶極矩的顆粒產(chǎn)生定向運(yùn)動(dòng),顆粒在磁力的作用下定向排列,顆粒從無序隨機(jī)狀態(tài)到有序化、成鏈、成束或形成某種結(jié)構(gòu),對(duì)外呈現(xiàn)明顯的表觀粘度增大、凝固以及剪切屈服應(yīng)力,即磁流變效應(yīng)。在磁場(chǎng)作用下固體顆粒的磁極化是產(chǎn)生磁流變效應(yīng)的主要因素。
在外加磁場(chǎng)作用下,顆粒發(fā)生上述所述的磁極化現(xiàn)象,于是定向移動(dòng)形成偶極子鏈。當(dāng)外加磁場(chǎng)強(qiáng)度較弱時(shí),鏈數(shù)量少、長度短、直徑也較細(xì),剪斷它們所需外力也較小。隨著外加磁場(chǎng)強(qiáng)度的不斷增加,取向與外加磁場(chǎng)成較大角度的磁疇全部消失,留存的磁疇開始向外磁場(chǎng)方向旋轉(zhuǎn),磁流變液中鏈的數(shù)量增加,長度增加,直徑變粗,磁流變液對(duì)所表現(xiàn)的剪切應(yīng)力增強(qiáng),再繼續(xù)增加磁場(chǎng),所有磁疇沿外加磁場(chǎng)方向整齊排列,磁極化達(dá)到飽和,磁流變液的剪切應(yīng)力也達(dá)到飽和。磁流變液的屈服應(yīng)力值隨外加磁場(chǎng)的增加而增加。但當(dāng)達(dá)到某一飽和值時(shí),如果再增加磁場(chǎng)強(qiáng)度,磁流變液的力學(xué)性質(zhì)便會(huì)基本上不會(huì)改變,即達(dá)到了飽和磁場(chǎng)下的動(dòng)態(tài)屈服應(yīng)力。
2.2 磁流變阻尼器工作模式
磁流變阻尼器是一種以磁流變液為介質(zhì)的半主動(dòng)控制阻尼器,通過對(duì)輸入電流的控制,使其外加磁場(chǎng)強(qiáng)度發(fā)生變化,進(jìn)而可在毫秒級(jí)使磁流變液的流變性能發(fā)生變化,實(shí)現(xiàn)流體和半固體之間的轉(zhuǎn)變,從而能夠提供可控阻尼力的目的。當(dāng)磁流變液流過活塞流過阻尼器上下兩腔時(shí),由于磁流變阻尼器活塞與工作缸之間的間隙很小,因此磁流變液流過的區(qū)域可以近似看似為流過一個(gè)無限大的平行金屬板,由于流體力學(xué)特性,可將磁流變阻尼器工作模式分為四種類型,他們分別是閥式、剪切式、擠壓式以及剪切閥式,如圖2.2所示。
圖2.2 磁流變阻尼器工作模式示意圖
(1)閥式(valved mode),磁流變液在壓力的作用下流過固定不動(dòng)的兩極板之間,外加磁場(chǎng)垂直穿過極板作用于磁流變液,從而使磁流變液的流動(dòng)特性發(fā)生變化而產(chǎn)生阻尼力的變化。
(2)剪切式(shearing mode),磁流變液流過相對(duì)運(yùn)動(dòng)的兩極板之間,外加磁場(chǎng)垂直穿過極板作用于磁流變液,這種運(yùn)動(dòng)使磁流變液產(chǎn)生剪切力,從而使磁流變液的流動(dòng)特性發(fā)生變化而產(chǎn)生阻尼力的變化,流動(dòng)阻力的變化通過外加磁場(chǎng)控制。
(3)擠壓式(squeezed mode),磁流變液在上下運(yùn)動(dòng)極板的作用下向四周流動(dòng),極板移動(dòng)反向與磁場(chǎng)方向相同,磁場(chǎng)方向與磁流變液流動(dòng)方向垂直,從而使磁流變液的流動(dòng)特征發(fā)生變化而產(chǎn)生阻尼力的變化,流動(dòng)阻尼力的變化通過外加磁場(chǎng)控制。
(4)剪切閥式(shearing-valve mode),也稱混合式,磁流變液即像閥式那樣在壓力作用下通過兩極板,又像剪切式那樣受到兩極板相對(duì)運(yùn)動(dòng)時(shí)產(chǎn)生剪切作用,從而使磁流變液的流動(dòng)特性發(fā)生變化而產(chǎn)生阻尼力的變化,流動(dòng)阻尼力的變化通過外加磁場(chǎng)控制。
2.3 參數(shù)計(jì)算模型
剪切閥式磁流變阻尼器工作于剪切和流動(dòng)的組合模式,具有結(jié)構(gòu)簡單、磁路設(shè)計(jì)方便、出力大等優(yōu)良特性,其工作原理為阻尼器內(nèi)腔充滿了磁流變液,活塞在工作缸內(nèi)作往復(fù)直線運(yùn)動(dòng),活塞與缸體發(fā)生相對(duì)運(yùn)動(dòng),擠壓磁流變液迫使其流過缸體與活塞間的間隙,在沒有外加磁場(chǎng)作用下,磁流變液以牛頓流體作粘性流動(dòng),符合牛頓流體的本構(gòu)關(guān)系;當(dāng)加上磁場(chǎng)后,磁流變液就會(huì)瞬間由牛頓流體轉(zhuǎn)變?yōu)檎乘荏w,粘度呈數(shù)量級(jí)地提高,流體的流動(dòng)阻力增加,表現(xiàn)為具有一定屈服力的類似固體的本構(gòu)關(guān)系。此時(shí)磁場(chǎng)對(duì)磁流變液的作用可用Bingham本構(gòu)關(guān)系進(jìn)行描述,如圖2.3,其本構(gòu)關(guān)系方程為:
圖2.3 Bingham模型
(2.1)
式中參數(shù)c變化范圍2-3,本文c=2,因此剪切閥式磁流變阻尼器阻尼力為:
公式可以改為:
(2.2)
(2.3)
(2.4)
從上式可以看出磁流變阻尼器的阻尼力由兩部分組成,一部分由液體流動(dòng)時(shí)液體粘性產(chǎn)生的粘滯阻尼力,而另一部分由磁流變效應(yīng)產(chǎn)生的庫倫阻尼力組成。當(dāng)阻尼器幾何尺寸確定后,假設(shè)磁流變液的粘度系數(shù)為常數(shù),粘滯阻尼力只是活塞運(yùn)動(dòng)速度的函數(shù),而庫倫阻尼力只是磁流變液屈服應(yīng)力的函數(shù),屈服應(yīng)力受磁場(chǎng)強(qiáng)度控制,因而可以認(rèn)為庫倫阻尼力只是勵(lì)磁電流的函數(shù)。
2.4 本章小結(jié)
本章主要論述了磁流變阻尼器的力學(xué)模型,說明了磁流變阻尼器中磁流變液在工作過程中的機(jī)理,介紹了Bingham數(shù)學(xué)模型,簡要說明了磁流變阻尼器的機(jī)構(gòu)和工作原理。分析了現(xiàn)有的幾種工作模式,并最后選擇了混合式的工作模式。闡述了阻尼力的求導(dǎo)原則。
第3章 磁流變阻尼器的設(shè)計(jì)
磁流變阻尼器是一種以磁流變液為介質(zhì)的半主動(dòng)控制阻尼器,其具有結(jié)構(gòu)簡單、控制方便、響應(yīng)迅速、消耗功率小、抗污染能力強(qiáng)和輸出力大等優(yōu)點(diǎn)。本文對(duì)基于剪切閥工作模式的雙筒式磁流變阻尼器進(jìn)行設(shè)計(jì)。
磁流變阻尼器設(shè)計(jì)應(yīng)該滿足以下設(shè)計(jì)準(zhǔn)則:外加垂直于磁流變液流動(dòng)方向的磁場(chǎng)對(duì)產(chǎn)生磁流變效應(yīng)的貢獻(xiàn)應(yīng)最大,而平行于磁流變液流動(dòng)方向的磁場(chǎng)則對(duì)產(chǎn)生磁流變效應(yīng)的貢獻(xiàn)最小。在采用剪切模式、流動(dòng)模式和擠壓模式的阻尼器式,磁力線的方向必須垂直于阻尼通道內(nèi)磁流變液的流動(dòng)方向,才能產(chǎn)生磁流變效應(yīng),這樣阻尼器才能產(chǎn)生所需的阻尼力。故在設(shè)計(jì)磁流變阻尼器使,應(yīng)使阻尼通道中的磁流變液的流動(dòng)方向垂直于磁場(chǎng)方向,以便充分利用磁流變效應(yīng)來改變阻尼器的阻尼力。由于汽車懸架阻尼器的行程較大,且在結(jié)構(gòu)尺寸和結(jié)構(gòu)強(qiáng)度上有嚴(yán)格的要求,利用磁流變液來開發(fā)汽車磁流變阻尼器不能踩用擠壓模式,而只能采用流動(dòng)模式、混合模式。本文采用的是混合模式。由于磁芯中磁感應(yīng)強(qiáng)度和磁場(chǎng)強(qiáng)度的關(guān)系是非線性的,因而,磁路中磁通和磁勢(shì)的關(guān)系也是非線性的。當(dāng)磁芯受到交變的磁激勵(lì)時(shí),磁芯處于反復(fù)磁化過程中,磁芯中會(huì)產(chǎn)生功率損失。另外,磁路的磁通與磁勢(shì)的關(guān)系除了滿足磁路的克?;舴蚨赏?,還要滿足電磁感應(yīng)定律。通過電流將導(dǎo)致渦流的產(chǎn)生,渦流的出現(xiàn)使磁芯中磁通與線圈中電流的波形發(fā)生變化。同時(shí),我們還要注意在阻尼器的應(yīng)用階段存在一些問題需要進(jìn)一步研究:(1)穩(wěn)定問題,其中包括磁流變流體的穩(wěn)定性以及阻尼器性能的穩(wěn)定性;(2)還原問題;(3)誤差問題,包括阻尼力、磁路磁場(chǎng)強(qiáng)度的計(jì)算值和實(shí)際值的誤差;(4)補(bǔ)償問題,包括磁流變液流體的滲漏補(bǔ)償以及控制系統(tǒng)的變量補(bǔ)償;(5)使用壽命問題,包括磁流變液、磁路線圈、密封系統(tǒng)的使用壽命;(6)文維修問題,主要是維修保養(yǎng)的方便性。
3.1 磁路設(shè)計(jì)的影響因素
磁流變阻尼器的性能主要決定于其幾何尺寸、磁路以及磁流變液的性能等。在給定磁流變液性能參數(shù)的情況下,設(shè)計(jì)一個(gè)優(yōu)良的阻尼器的關(guān)鍵在于阻尼器的構(gòu)造設(shè)計(jì)和磁路設(shè)計(jì)。此外,還包括防塵、漏液、隔磁、密封、散熱以及連接等反面的考慮。在設(shè)計(jì)時(shí)要考慮以下幾個(gè)因素:磁性材料的選擇、漏磁的分析、退磁和線圈的設(shè)計(jì)等。
3.1.1密封件的選擇
(1)密封件的作用和意義
在減振器設(shè)計(jì)中,密封裝置用來防止磁流變液的泄露以及外界灰塵和異物的侵入。磁流變液外漏不僅會(huì)造成浪費(fèi),污染機(jī)械和工作環(huán)境,甚至?xí)饳C(jī)械操作失靈及設(shè)備和人身事故。若導(dǎo)線與磁流變液直接接觸,可能產(chǎn)生漏磁,導(dǎo)致導(dǎo)線發(fā)熱,影響磁流變液的性能。侵入減振器中的微小灰塵微粒,會(huì)引起加劇液壓元件的磨損和摩擦,增大阻尼力,減小減振器的功效,并且還有可能進(jìn)一步導(dǎo)致泄露。因此,密封件是減振器的一個(gè)重要的組成部分。它的工作可靠性和使用壽命,是衡量液壓系統(tǒng)好壞的一個(gè)重要標(biāo)準(zhǔn)。
(2)密封的分類
被密封的部位在兩個(gè)需要密封的偶合面之間,通常根據(jù)這些偶合面在機(jī)械運(yùn)行時(shí)有無相對(duì)運(yùn)動(dòng),可把密封分為動(dòng)密封和靜密封兩類。
(3)密封形式的選擇
設(shè)計(jì)或選擇密封件以及裝置的基本要求是:
1) 密封件長期在流體介質(zhì)中工作,必須保證其材料物理性能的穩(wěn)定。
2)在工作壓力下,應(yīng)具有良好的密封性能,并隨著壓力的增加
能自動(dòng)提高其密封性能,即泄露在高壓下沒有明顯的增加。
3)動(dòng)密封裝置的動(dòng)摩擦阻力要小,摩擦系數(shù)要穩(wěn)定,不能出現(xiàn)運(yùn)動(dòng)偶件卡住或運(yùn)動(dòng)不均勻等現(xiàn)象。
4)磨損小,使用壽命長。
5)制造簡單,拆卸方便,成本低廉。
密封件的選擇方法,首先根據(jù)密封設(shè)備的使用條件和要求,例如負(fù)載情況、工作壓力以及速度大小和變化情況、使用環(huán)境以及對(duì)密封性能的具體要求等,正確選擇與之相匹配的密封件結(jié)構(gòu)形式。然后再根據(jù)所用工作介質(zhì)的種類和使用溫度,合理選擇密封件材料。在使用或設(shè)計(jì)時(shí),應(yīng)盡可能按照國家標(biāo)準(zhǔn)。
從裝配圖上可以看出,該減振器需要多出密封。由于減振器中活塞和缸體有相對(duì)運(yùn)動(dòng),所以本結(jié)構(gòu)采用Vd形橡膠密封圈,其主要材料為氟橡膠(SN),XAI7453,工作介質(zhì)為油、水、空氣,軸速小于等于19m/s設(shè)備,起端面密封和防塵的作用。
3.1.2 漏磁分析
在所有的磁路中都存在著漏磁,這是應(yīng)為在磁路的實(shí)際兩點(diǎn)間若有任一磁位差,就有磁通存在。漏磁與磁路的幾何形狀有關(guān),磁路中各段均有漏磁存在。磁路中的漏磁有三種形式:
(1) 工作間隙端面漏磁,在工作間隙附近成圓弧狀,工作間隙越長,這種漏磁就愈大??梢哉J(rèn)為,這種漏磁與工作間隙長度成比例增加,而且還受間隙端面的形狀及相對(duì)位置等因素影響。
(2) 磁體表面漏磁,通常磁體越長,這種漏磁就越大。
(3) 軛鐵間的漏磁,這種漏磁與磁體在磁路中的位置有關(guān)。磁體相對(duì)位置不同,漏磁差別也很大。磁鐵越靠近工作間隙,漏磁就越小。另外,在空隙處,磁力線會(huì)往外膨脹,因而取空隙的橫截面積時(shí),應(yīng)該取大一些。并且在以往的研究中得到漏磁磁導(dǎo)在很大程度上決定于磁體側(cè)面表面積,表面積越大漏磁越大。所以,在實(shí)際工作間隙內(nèi)的磁場(chǎng)要小于計(jì)算值。在磁路設(shè)計(jì)時(shí),合理地縮短工作間隙的距離,減少結(jié)合面,改善結(jié)合情況都有利于減少磁路中的漏磁。同時(shí),為了減少磁鐵表面的漏磁,我們?cè)诖怕吠饪杉由香~環(huán)或銅圈以此來進(jìn)行磁屏蔽。
為了減少漏磁,設(shè)計(jì)是需要注意以下幾點(diǎn):
(1) 因?yàn)榛钊麠U不在磁回路中,所以最好選用不導(dǎo)磁材料或?qū)Т挪牧媳容^低的材料。
(2) 導(dǎo)磁回路中,導(dǎo)磁體的連續(xù)處盡量緊密接觸,以免在連接處因存在縫隙而產(chǎn)生較大磁阻,影響效率。
(3) 在整個(gè)磁路中,盡量使各導(dǎo)磁體的磁阻大致相同,使得整個(gè)磁路均衡匹配,從而防止部分地段較早的磁飽和。在磁路設(shè)計(jì)中,對(duì)于磁路中漏磁的解決,本章采用漏磁系數(shù)的概念來設(shè)計(jì)磁路。即在考慮漏磁的情況下,線圈產(chǎn)生的磁通量就不等于工作間隙中的磁通量,在計(jì)算中引入漏磁系數(shù)。
3.1.3磁性材料的選擇
磁性元件主要指缸筒、磁軛、磁芯和活塞桿。在忽視漏磁的情況下,纏繞在導(dǎo)磁環(huán)上的勵(lì)磁線圈產(chǎn)生的磁場(chǎng)經(jīng)過磁軛、間隙、缸筒、最后回到磁芯形成閉合回路。阻尼通道的槽太寬滯留的磁流變液多,阻力大,調(diào)節(jié)范圍大。缸體設(shè)計(jì)要考慮壁厚,避免經(jīng)由缸體的磁通比較早的進(jìn)入飽和。
一般電磁路的磁芯選用軟磁體,其特點(diǎn)在于軟磁體有高的磁感應(yīng)強(qiáng)度,易退磁,磁滯回線包圍面積小,大的磁導(dǎo)率和很小的矯頑力。軟磁材料是磁力線的通路,使用軟磁材料可以減少磁阻,在必要的控件建立均勻強(qiáng)度磁場(chǎng)。磁芯材料的種類較多,主要有電工純鐵、硅鋼、鐵鎳合金、鐵鋁合金、鐵鈷合金等。在選擇材料時(shí)通常要求磁芯材料磁導(dǎo)率高,因?yàn)楫?dāng)線圈匝數(shù)一定時(shí),通以不大的電流,就能產(chǎn)生很大的磁場(chǎng)。一般來講軟磁材料的磁導(dǎo)率都比較高。為了減小由交變電引起的交變磁場(chǎng),不使磁導(dǎo)體中產(chǎn)生渦流損失,故選擇給阻尼器直流電。退磁,對(duì)于磁路的有效能很重要,因?yàn)楫?dāng)初始斷電時(shí),如果仍存在磁場(chǎng),那勢(shì)必會(huì)對(duì)振動(dòng)控制的有效性產(chǎn)生影響。所以我們選擇的軟磁材料必須有較小的剩磁,較小的矯頑力以及較小磁滯回線包圍的面積。由此可以看出軟磁材料中具有扁平磁滯回線的這一列材料比較符合要求。結(jié)合以上的分析最終磁芯材料選擇鐵鎳合金。
3.1.4退磁
這里所說的退磁和磁芯材料選擇中的退磁有區(qū)別。這個(gè)退磁是指,如果給定的空間及工作間隙很小,在這些很小的間隙中帶上一些外來的強(qiáng)磁性微粒,則強(qiáng)磁性微粒就會(huì)破壞間隙中應(yīng)有的磁場(chǎng)大小或磁場(chǎng)分布狀態(tài)以至于使磁系統(tǒng)不能正常工作。在這種情況下,為了保證磁系統(tǒng)正常工作,必須清除外來的強(qiáng)磁性微粒或預(yù)防強(qiáng)磁性微粒的吸附,這就必須完全退磁。所謂退磁就是用一定的方法使試樣處于磁中性狀態(tài)。退磁的方法有:靜態(tài)和動(dòng)態(tài)退磁法。
3.1.5磁流變阻尼器的動(dòng)態(tài)范圍
磁流變阻尼器的動(dòng)態(tài)范圍是衡量磁流變阻尼器性能的重要指標(biāo)。粘滯阻尼力工作過程中基本保持不變,而又磁流變效應(yīng)產(chǎn)生的剪切阻尼力隨外加磁場(chǎng)的大小而不同,因此整個(gè)阻尼力變化幅度定義為磁流變阻尼器的動(dòng)態(tài)范圍D,其表達(dá)式為3-1
式中為摩擦引起的阻尼力。由上式可以看出,當(dāng)結(jié)構(gòu)設(shè)定時(shí),和為常量,越大,D越大,阻尼效果越好。
3.1.6阻尼間隙的選取對(duì)阻尼器性能的影響
阻尼間隙尺寸的選取直接影響著磁流變阻尼器的阻尼特性。阻尼間隙h與磁流變阻尼器的阻尼力F成反比。通過仔細(xì)分析比較可知,一方面,庫倫阻尼力與阻尼間隙h成反比,在設(shè)計(jì)中,要求盡可能增加可控阻尼力(即庫倫阻尼力)的大小以增強(qiáng)可控效果,所以,要獲得大的可控阻尼力,在設(shè)計(jì)時(shí),需要減小h的取值,另一方面,粘滯阻尼力與阻尼間隙h的三次方成反比,隨著間隙的減小,粘滯阻尼力和快速增加,動(dòng)態(tài)范圍會(huì)迅速減小。根據(jù)設(shè)計(jì)要求,在設(shè)計(jì)過程中,應(yīng)盡可能增加磁流變阻尼器的動(dòng)態(tài)范圍以提高阻尼器的可控能力,因此,在設(shè)計(jì)時(shí)應(yīng)適當(dāng)?shù)倪x取阻尼間隙的大小,一般合適的間隙范圍為0.5-2mm。
3.1.7阻尼通道有效長度的選取對(duì)阻尼器性能的影響
活塞阻尼通道有效長度L的增加,導(dǎo)致了更多的磁流變液產(chǎn)生磁流變效應(yīng),磁流變阻尼力增大。但是由于不同車型底盤對(duì)懸架阻尼器的布置空間有限,有效長度增加勢(shì)必會(huì)導(dǎo)致活塞的長度增加,這樣會(huì)使阻尼器工作的有效行程受到影響。因此,為了獲得較大阻尼力,在結(jié)構(gòu)尺寸允許的前提下,應(yīng)盡可能的增加阻尼通道的有效長度。
3.1.8磁路結(jié)構(gòu)的分析
由于磁流變阻尼器與普通阻尼器就夠上的不同,為了達(dá)到阻尼力可控,其活塞上纏有線圈,就涉及到線圈引入問題,因此,采用活塞桿內(nèi)設(shè)引線孔德方法。由于引線長度很長而且引線孔直徑很小,已有的加工工具在強(qiáng)度和長度上都無法實(shí)現(xiàn)該活塞桿結(jié)構(gòu),而且引線孔的作用只是滿足導(dǎo)線引出,因此,活塞桿采用電火花打孔的方法,對(duì)孔的同心度及光潔度要求不用太高。
磁流變阻尼器活塞上的線圈在纏繞過程中,主要會(huì)遇到兩個(gè)問題,一是漆包線在纏繞結(jié)束后需要從活塞桿引線孔中再引出的方法問題;二是在引線過程中,活塞桿內(nèi)引線通道比較粗糙,由于漆包線劃傷出現(xiàn)的短路問題。對(duì)于前者,若采用單線引入引出,還會(huì)是引線通道出入口加大,而且加大密封的難度;對(duì)于后者,若采用帶有絕緣套的導(dǎo)線,會(huì)在設(shè)計(jì)時(shí)增加磁流變阻尼器活塞纏繞線圈處得尺寸,進(jìn)而影響活塞在阻尼器內(nèi)有限空間的布置。因此,在設(shè)計(jì)時(shí),在引線通道口處精致處理的基礎(chǔ)上,采用雙線引入的方法,并且將活塞桿引線孔內(nèi)的漆包線用熱線管處理,避免在穿線時(shí)劃傷受損,并且一根線為纏繞對(duì)象,纏繞后兩線焊接的方法,解決了漆包線劃傷和密封難度加大問題。
3.2磁流變減振器線圈的設(shè)計(jì)
線圈參數(shù)可以分兩類:工作參數(shù)和設(shè)計(jì)參數(shù)。所謂工作參數(shù),就是線圈的工作電壓、頻率以及工作制等;所謂設(shè)計(jì)參數(shù),則是指線圈的匝數(shù)、線徑、電阻以及結(jié)構(gòu)尺寸等。工作參數(shù)決定于電磁鐵的工作條件。在設(shè)計(jì)過程中我們要根據(jù)工作參數(shù)來確定設(shè)計(jì)參數(shù),具體的方法如下:
在一定的工作參數(shù)下,線圈必須滿足下列三方面的要求,首先能夠產(chǎn)生規(guī)定的磁勢(shì),其次在規(guī)定的工作制下,線圈的溫度不會(huì)超過它的許用值,最后線圈的尺寸應(yīng)當(dāng)能夠同磁芯的尺寸相配合。
根據(jù)以上的原因,線圈計(jì)算一般包括三個(gè)方面的內(nèi)容,尺寸設(shè)計(jì)、電計(jì)算、和熱計(jì)算。尺寸設(shè)計(jì)是決定線圈的外形尺寸,包括外徑和內(nèi)徑等,線圈的內(nèi)部尺寸和線圈參數(shù)以及線圈所占面積等。電計(jì)算是確定線圈的電阻、激磁電流和線圈的能量消耗。熱計(jì)算是確定線圈的溫升。電器中的金屬材料和絕緣材料在溫度超過一定范圍后,其機(jī)械強(qiáng)度會(huì)下降,絕緣強(qiáng)度也會(huì)受到損壞。電器工作溫度過高,會(huì)使其使用壽命降低,甚至遭到破壞。電器的損壞以及工作不正常會(huì)給整個(gè)被控系統(tǒng)帶來嚴(yán)重結(jié)果,所造成的經(jīng)濟(jì)損失比電器本身的價(jià)值往往要高的多。其中熱計(jì)算經(jīng)常用來對(duì)線圈設(shè)計(jì)進(jìn)行校核。熱計(jì)算采用牛頓公式,此公式通常使用于氣體和液體介質(zhì)中的發(fā)熱體溫升的校核。
線圈中導(dǎo)線的選擇:
(1) 導(dǎo)線的選擇主要考慮它所能承受的最大電流,避免溫度過高。電流安全密度為5-8A/mm。
(2) 考慮環(huán)形導(dǎo)磁材料的公稱直徑和斷面直徑,以便計(jì)算所能纏繞的線圈匝數(shù)。
(3) 考慮活塞中安方線圈的空間大小,不能因?yàn)槔p繞后太粗而導(dǎo)致安裝困難。
(4) 要考慮導(dǎo)線的磨損問題。由于活塞組裝過程中,線圈與導(dǎo)磁環(huán)相對(duì)運(yùn)動(dòng),因此必須保證導(dǎo)線不能因?yàn)槟p而漏磁甚至短路。
綜合考慮以上因素,選擇型號(hào)為QQ-1縮醛漆包銅線,規(guī)格為d為0.5mm,標(biāo)準(zhǔn)號(hào)為GB6109.3-8561.其優(yōu)點(diǎn)是:抗沖擊性能好,耐刮性能優(yōu),耐水解性好。
3.3磁流變減振器的結(jié)構(gòu)設(shè)計(jì)
3.3.1結(jié)構(gòu)方案的確定
通過對(duì)以上因素的分析,本設(shè)計(jì)選擇混合工作模式的雙筒式磁流變減振器。雙筒式磁流變阻尼器工作原理圖,如圖3-1所示,其與傳統(tǒng)液壓雙筒式阻尼器工作原理相似,當(dāng)活塞3在工作缸5內(nèi)上下運(yùn)動(dòng)時(shí),隨著磁流變液在工作缸5上下腔之間或工作缸5與貯液筒4之間的往復(fù)運(yùn)動(dòng),活塞3與工作缸5縫隙及壓縮閥7分別產(chǎn)生復(fù)原阻力和壓縮阻力,而補(bǔ)償閥6則保證磁流變液在工作缸5與貯液筒4之間來回流動(dòng),確保磁流變液始終充滿工作缸5.通過對(duì)磁流變阻尼器活塞上線圈2通入電流的變化,改變活塞與工作缸間隙處磁場(chǎng)強(qiáng)度,在外加磁場(chǎng)的作用下,磁流變液中隨機(jī)分布的磁極化粒子沿磁場(chǎng)方向運(yùn)動(dòng),磁化運(yùn)動(dòng)使粒子首尾相連,形成鏈狀或網(wǎng)狀結(jié)構(gòu),如圖3.1所示。從而使磁流變液的流動(dòng)特性發(fā)生變化,進(jìn)而使阻尼器阻尼通道兩端的壓力差發(fā)生變化,使復(fù)原阻尼力加以改變。這樣磁流變阻尼器便將車輛振動(dòng)的機(jī)械能轉(zhuǎn)變?yōu)闊崮?,?jīng)貯液筒與冷空氣的熱交換及熱輻射,將熱能耗散到大氣中去。
1.活塞桿 2.線圈 3.活塞 4.儲(chǔ)液筒 5.工作缸 6補(bǔ)償閥 7.壓縮閥
圖3.1 雙筒式磁流變阻尼器工作原理圖
3.3.2磁流變減振器結(jié)構(gòu)優(yōu)點(diǎn)
首先,減振器的活塞上開有若干個(gè)矩形齒狀環(huán)槽。在外加磁場(chǎng)的作用下,當(dāng)磁流變液流經(jīng)環(huán)形通道時(shí),由于環(huán)形槽的阻礙作用,減振器的阻尼力隨磁流變液粘度的變化會(huì)產(chǎn)生較大的變化。
其次,導(dǎo)線由中空的活塞桿引出,并且在減振器內(nèi)部,使得導(dǎo)線與磁流變液分離,有良好的磁效應(yīng)。并且在運(yùn)動(dòng)過程中活塞內(nèi)部的線圈相對(duì)于活塞靜止,降低了導(dǎo)線磨損的可能性,使用更加安全。
第三,雙出桿結(jié)構(gòu)有良好的定位效果,保證同軸度,能有效降低運(yùn)動(dòng)過程中活塞與端蓋之間的磨損和防止卡死現(xiàn)象的發(fā)生。
最后,所設(shè)計(jì)的減振器結(jié)構(gòu)是在傳統(tǒng)的減振器基礎(chǔ)上設(shè)計(jì)的,有一定的使用價(jià)值,且已維修和更換,實(shí)驗(yàn)過程中便于找到合適的減振器。
3.4磁流變減振器磁路的設(shè)計(jì)
根據(jù)對(duì)影響磁流變減振器磁效能的分析,可逐步確定磁路的大致結(jié)構(gòu),以及計(jì)算的方法。如下是對(duì)磁路中各個(gè)參數(shù)進(jìn)行的設(shè)計(jì)和選擇,其中熱計(jì)算經(jīng)常是用來對(duì)線圈的設(shè)計(jì)進(jìn)行校核。
3.4.1有關(guān)參數(shù)的初步確定
(1)工作間隙:隨著間隙的增加,磁流變阻尼器的阻尼力顯著下降,若使磁流變液從液態(tài)變成半固態(tài)。則必須使其處于磁場(chǎng)強(qiáng)度為幾十至幾百千安/米的磁場(chǎng)中,由于活塞中線圈產(chǎn)生的磁場(chǎng),在缸體與活塞的間隙中,越遠(yuǎn)離線圈,磁場(chǎng)的強(qiáng)度下降的越快,因此在實(shí)際設(shè)計(jì)減振器時(shí)在其它參數(shù)不變的情況下,盡量選擇較小的值。但是,工作間隙過小,經(jīng)前面工作間隙對(duì)阻尼器的影響中分析,工作間隙還不能過小,在傳統(tǒng)的設(shè)計(jì)中,常取磁流變阻尼器的阻尼間隙值在0.5~2.0mm中選取。線圈與外殼間的間隙的漏磁是阻尼器最主要的漏磁區(qū)域,因而在進(jìn)行結(jié)構(gòu)設(shè)計(jì)時(shí),我們應(yīng)該盡量減少此間隙的漏磁,也就是說減小線圈與外殼間的間隙,但如果遇到磁流變液表觀粘度大,為防止阻塞,影響阻尼器的正常工作,在尺寸設(shè)計(jì)時(shí),線圈與外殼間的間隙為工作間隙叫上0.2mm,設(shè)定線圈上部的間隙為0.8mm。
(2)工作間隙有效長度:工作間隙有效長度在后面的計(jì)算中算出,該量也是重要的參數(shù)值,影響磁流變阻尼器工作的效能。
(3)漏磁系數(shù)、磁阻系數(shù)f:漏磁系數(shù)的確定是比較復(fù)雜的,由于磁路尺寸結(jié)構(gòu)和磁軛形狀的不同,漏磁系數(shù)的范圍也很大。下限為2.0.上限在理論上可達(dá)到無窮大,根據(jù)經(jīng)驗(yàn),初定為2.48.磁阻系數(shù)f與磁軛的長短、接觸面積的多少、結(jié)合情況以及工作間隙的大小有關(guān)。一般地說,磁阻系數(shù)f在1.1~1.5的范圍內(nèi),初定f為1.2。
(4)材料的相對(duì)磁導(dǎo)率:根據(jù)所使用的磁流變液其相對(duì)磁導(dǎo)率=8;工作缸的選擇要考慮材料的結(jié)構(gòu)強(qiáng)度、制造成本以及漏磁效果,先選定為45號(hào)鋼,其相對(duì)磁導(dǎo)率為=2;磁芯的選擇為軟磁鐵,一般選擇工業(yè)純鐵,現(xiàn)選用磁芯為鐵鎳合金,確定工作點(diǎn)后得=50000,磁軛材料選定為軟磁材料,先選用硅鋼,=7000,磁流變液對(duì)磁軛、工作缸都有沖刷作用,必須對(duì)其工作表面進(jìn)行表面處理,對(duì)磁軛、工作缸材料的工作表面進(jìn)行熱噴涂處理,所噴涂的材料應(yīng)耐沖刷和具有較高的磁導(dǎo)率。
(5)其它根據(jù)設(shè)計(jì)要求初步確定的參數(shù),根據(jù)最終汽車懸架半主動(dòng)控制所需要的阻尼力的大小,我們確定工作間隙所需的磁通密度=0.65T,磁場(chǎng)強(qiáng)度=1.5A/cm。先初步確定磁芯的磁通密度=0.75T、磁場(chǎng)強(qiáng)度=1A/cm。
(6)線圈參數(shù)的確定,采用并列式繞法。考慮到線圈被浸在磁流變液中,故設(shè)定線圈的熱系數(shù)=1.2;線圈填充系數(shù)是導(dǎo)體材料所占空間的截面積與線圈窗口的截面積之比,但實(shí)際上線圈填充系數(shù)是很難確定的,因?yàn)樗屠@組的纏繞方式等因素有關(guān),取=0.63,線圈采用銅制漆包線。
3.4.2已有參數(shù)的確定
表3.1為某微型汽車前減振器壓縮及復(fù)原阻尼力,因此磁流變減振器的阻尼力范圍也應(yīng)滿足此汽車對(duì)減振器的要求。為了方便磁流變減振器的實(shí)車實(shí)驗(yàn),本文設(shè)計(jì)的磁流變減振器外形尺寸和原阻尼器相同。
由于保留了一些原減振器的材料和尺寸。如圖3.1所示確定的參數(shù)為工作缸的內(nèi)徑=2=40mm,工作缸外徑=2=44mm,工作缸的材料為45號(hào)鋼,活塞桿直徑=2=28mm,活塞桿材料為45號(hào)鋼。需要確定的參數(shù)有:線圈的匝數(shù)、活塞的直徑。
表3.1為某微型汽車前減振器壓縮阻尼力和復(fù)原阻尼力,因此磁流變減振器的阻尼力可調(diào)范圍也應(yīng)該滿足此微型汽車對(duì)阻尼力的要求。為了方便磁流變減振器的實(shí)車實(shí)驗(yàn),本文所設(shè)計(jì)的磁流變減振器外形尺寸與原阻尼器相同。
圖3.1磁流變減振器的結(jié)構(gòu)模型
表3.1 原有減振器要求
速速()
某微型汽車前減振器
——
復(fù)原阻力(N)
壓縮阻力(N)
0.05
245
175
0.1
520
245
0.3
920140
39080
現(xiàn)在計(jì)算阻尼力如下:將已確定的尺寸,工作間隙h=0.6mm,工作缸內(nèi)徑=40mm,活塞外徑=38.8mm,活塞桿直徑=28,=30-50KPa,及速度在0.05、0.1、0.3代入公式3.1中
(3.1)
(3.2)
(3.3)
(3.4)
式中為磁流變液的表觀粘度,值為0.27Pa。
經(jīng)計(jì)算的表3.3所示,磁流變減振器的理論阻尼力值。
表3.3 磁流變減振器的理論阻尼力
速度()
磁流變減振器阻尼力
0.05
2183.2
0.1
2258.45
0.3
2559.35
3.5磁路相關(guān)參數(shù)的計(jì)算
3.5.1 磁路的計(jì)算
(1)確定磁芯面積 磁芯長度
確定工作間隙磁通=0.65T; 工作間隙磁場(chǎng)強(qiáng)度=1.5A/cm;
磁芯磁通密度=0.75T; 磁芯磁場(chǎng)強(qiáng)度=1.0A/cm;
磁勢(shì)損失系數(shù)f=1.2; 工作間隙=0.6mm;
漏磁系數(shù)=2.48; 阻尼通道長度=11mm;
==74.23 (3.5)
= (3.6)
=f (3.7)
=159.55
=18mm
(2)計(jì)算各部分磁阻
間隙磁阻
===3209262.592 (3.8)
磁芯磁阻
===1470.65 (3.9)
磁軛磁阻
===459 (3.10)
缸筒磁阻
==437628.263
總磁阻
=1.08 (3.11)
(3)計(jì)算線圈匝數(shù)
磁芯部分的磁通=0.12wb
設(shè)定通電電流為I=0.4A
=80匝
(4)線圈的發(fā)熱溫度校核
設(shè)計(jì)公式采用的是適用于氣體和液體的牛頓公式,
(3.12)
為線圈的溫升,I為電流,為銅制漆包線的磁導(dǎo)率,為漆包線的直徑,為線圈散熱系數(shù)。
=7
由于發(fā)熱溫度遠(yuǎn)遠(yuǎn)小于80,則設(shè)計(jì)是合格的。
3.6 工作缸的計(jì)算
(1)工作缸壁厚
(3.13)
(3.14)
(3.15)
式中:
:為缸筒外徑公差余量,m
:腐蝕余量,m
D:缸筒內(nèi)徑,m
:缸筒材料的抗拉強(qiáng)度,MPa
n:安全系數(shù),通常取5
=2mm
(2)工作缸壁厚的驗(yàn)算
額定工作壓力低于一定極限值,以保證安全:
MPa (3.16)
求得
44.73MPa
由于額定工作壓力=20MPa,所以滿足要求;
同時(shí)額定工作壓力也應(yīng)與完全塑性變形壓力有一定的比例范圍,以避免塑性變形的發(fā)生:
:缸筒發(fā)生完全塑性變形的壓力,MPa
(3.17)
求得:
=106.42MPa
由于額定工作壓力 所以滿足要求;
(3)工作缸長度需要根據(jù)活塞行程,活塞桿長度,及整體裝配時(shí)確定
活塞行程S初步確定時(shí),主要按實(shí)際工作需要的長度來考慮,但這一行程并不一定是液壓缸的穩(wěn)定性所允許的行程。
S= (3.18)
E:材料的彈性模量。鋼材的E=2.1N/
I:活塞桿橫截面的慣性矩,單位 I=0.049
d:活塞桿直徑
:活塞桿彎曲失穩(wěn)定臨界壓縮力
求得:S=160mm
(4)活塞桿的強(qiáng)度計(jì)算
活塞桿在穩(wěn)定工況下,只受軸向推力或拉力,可以近似地使用直桿受拉壓載荷的簡單強(qiáng)度計(jì)算公式進(jìn)行計(jì)算:
(3.19)
F:活塞桿的作用力,N F=213-1262N
:材料的許用應(yīng)力,對(duì)45號(hào)鋼,=50MPa
由于 所以滿足要求;
3.7 本章小結(jié)
本章對(duì)所設(shè)計(jì)的磁流變減振器進(jìn)行了主要部分的計(jì)算,給出了阻尼力的計(jì)算公式,通過理論計(jì)算確定了磁流變減振器的結(jié)構(gòu)參數(shù),討論了阻尼通道長度和間隙、電流強(qiáng)度對(duì)阻尼力的影響。研究表明,合理設(shè)計(jì)阻尼通道長度,選擇合適的間隙,對(duì)提高減振器的阻尼力和可調(diào)范圍很重要。
第4章 磁流變減振器基于Matlab的仿真分析
基于磁流變減振器在汽車懸架減振系統(tǒng)半主動(dòng)控制中的廣泛應(yīng)用,根據(jù)磁流變液的特點(diǎn)和磁流變減振器阻尼力與結(jié)構(gòu)參數(shù)的關(guān)系,設(shè)計(jì)了新型的磁流變減振器,并對(duì)影響磁流變減振器性能的參數(shù)進(jìn)行了仿真。仿真表明,該磁流變減振器設(shè)計(jì)計(jì)算是一種能優(yōu)化阻尼力的有效算法。
4.1減振器的阻尼力計(jì)算模型
本文選用剪切閥式磁流變阻尼器工作模式進(jìn)行結(jié)構(gòu)設(shè)計(jì),在結(jié)構(gòu)設(shè)計(jì)前,必須明確該工作模式磁流變液的流變方程,繼而推導(dǎo)出磁流變阻尼力的計(jì)算模型,這是結(jié)構(gòu)設(shè)計(jì)過程中的依據(jù)所在?;诩羟虚y式磁流變阻尼器的阻尼通道的寬度遠(yuǎn)大于其阻尼間隙,因而可簡化成磁流變液在兩相對(duì)運(yùn)動(dòng)平板之間的運(yùn)動(dòng)。為了簡化分析,工作于剪切閥式的磁流變阻尼力可以看成是在閥式工作模式下的阻尼力和剪切工作模式下阻尼力的疊加。
在外加磁場(chǎng)作用下,磁流變液表現(xiàn)Bingham流體,其磁流變液在平板的流動(dòng)和速度分布如圖4.1所示,其本構(gòu)關(guān)系可用下列方程描述:
(4.1)
(4.2)
圖4.1 磁流變液在平板中的流動(dòng)和速度分布
在閥式工作模式下磁流變液的速度分布如圖4.1所示。假設(shè)磁流變液的體積流速Q(mào)在x方向上一維流動(dòng),在y方向上不流動(dòng)。設(shè)兩平板之間的間隙為h,長度為L,寬度為b,由流體力學(xué)可得下列微分方程:
(4.3)
式中u、v分別是磁流變液在x、y方向上的流動(dòng)速度;是磁流變液在x方向的壓力梯度,為了簡化將壓力梯度是為x方向線性變化=,l是阻尼通道的長度;是阻尼通道兩端的壓力差;是磁流變液的密度;t是時(shí)間變量;由于流動(dòng)速度低,可不計(jì)慣性效應(yīng),;令沿x的剪切應(yīng)力,由于磁流變流動(dòng)的連續(xù)性,沿x方向的速度不變即則方程(4.3)簡化為:
(4.4)
對(duì)其積分可得:
(4.5)
D是待定的積分常數(shù)。
由公式(4.4)可知,磁流變液受到的剪切應(yīng)力沿平板間隙是按線性分布的,靠近平板的磁流變液受到的剪切力最大,而中間對(duì)稱面上的磁流變液受到的剪切應(yīng)力最小,根據(jù)極板兩端壓差產(chǎn)生的剪切應(yīng)力與極板附近磁流變液的臨界剪切屈服應(yīng)力比較,當(dāng)前者小于后者磁流變液靜止不動(dòng);當(dāng)前者大于后者將產(chǎn)生如圖4.1所