購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載就能得到。。。【注】:dwg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢QQ:1304139763
UNIVERSITY 畢業(yè)設(shè)計 論文 過程管理資料 題 目 中錐零件成形工藝分析及模具設(shè)計 系 部 機(jī)電工程系 專 業(yè) 材料成型及控制工程 學(xué) 生 姓 名 班 級 學(xué)號 指導(dǎo)教師姓名 職稱 最終評定成績 教務(wù)處 二 一一年二月制 目 錄 一 畢業(yè)設(shè)計 論文 課題任務(wù)書 二 本科畢業(yè)設(shè)計 論文 開題報告 三 本科畢業(yè)設(shè)計 論文 中期報告 四 畢業(yè)設(shè)計 論文 指導(dǎo)教師評閱表 五 畢業(yè)設(shè)計 論文 評閱教師評閱表 六 畢業(yè)設(shè)計 論文 答辯評審表 2013 屆畢業(yè)設(shè)計 論文 課題任務(wù)書 系 部 機(jī)電工程系 專業(yè) 材料成型與控制工程 指導(dǎo)教師 職稱 講師 學(xué)生姓名 學(xué)號 班級 課題名稱 中錐零件成形工藝分析及模具設(shè)計 內(nèi) 容 及 任 務(wù) 本次畢業(yè)設(shè)計課題為中錐零件成形工藝分析及模具設(shè)計 工件圖見圖 1 大批量生產(chǎn) 材料為 08 鋼 厚度為 3 5mm 無特殊精度要求 設(shè)計內(nèi) 容如下 1 在熟悉沖壓工藝的基礎(chǔ)上 設(shè)計中錐形件沖壓成形工藝 2 設(shè)計此零件所用的成形模具 設(shè)計加工工藝卡 3 繪制成形模具的二維工程圖及零件圖 圖 1 中錐零件 擬 達(dá) 到 的 要 求 或 技 術(shù) 指 標(biāo) 1 查閱 20 篇以上的文獻(xiàn) 2 學(xué)習(xí)掌握沖壓工藝 沖壓模設(shè)計過程 熟悉沖壓模結(jié)構(gòu) 3 設(shè)計沖壓工藝 繪制成形用裝配圖與零件圖 至少 3 張 0 號圖紙 其 中包括一張 A1 的手繪圖 4 撰寫 12000 字以上的設(shè)計說明書 起止日期 工作內(nèi)容 2012 年 12 月 完成開題報告 2013 年 1 4 周 實(shí)習(xí) 了解工作條件和收集原始數(shù)據(jù) 制定初步設(shè)計方案 征求意見 2013 年 5 6 周 查閱與畢業(yè)設(shè)計課題內(nèi)容相關(guān)的文獻(xiàn)資料 完成方案設(shè)計 2013 年 7 8 周 分析 優(yōu)化結(jié)構(gòu) 校核主要零件強(qiáng)度 修改不合理結(jié)構(gòu) 完成設(shè)計 校核 2013 年 9 12 周 工程圖制作 出圖 進(jìn) 度 安 排 2013 年 13 14 周 編寫設(shè)計說明書 指導(dǎo)教師批改 主 要 參 考 資 料 1 王孝培 沖壓手冊 北京 機(jī)械工業(yè)出版社 1988 2 梁炳文 板金沖壓工藝與竅門精選 北京 機(jī)械工業(yè)出版社 2000 3 許洪斌 文琍 模具制造技術(shù) 北京 化工工業(yè)出版社 2007 4 肖景容 姜奎華 沖壓工藝學(xué) 北京 機(jī)械工業(yè)出版社 1988 教研室 意見 簽名 年 月 日 系 部 主管 領(lǐng)導(dǎo)意見 簽名 年 月 日 注 本任務(wù)書一式三份 由指導(dǎo)教師填寫 經(jīng)教研室 系 部 審批后一份下達(dá)給學(xué)生 一份由指 導(dǎo)教師保留 一份交系部存檔 本科畢業(yè)設(shè)計 論文 開題報告 2013 屆 系 部 機(jī)電工程系 專 業(yè) 材料成型及控制工程 學(xué) 生 姓 名 班 級 學(xué)號 指導(dǎo)教師姓名 職稱 2013 年 1 月 6 日 題目 中錐零件成形工藝分析及模具設(shè)計 1 結(jié)合課題任務(wù)情況 根據(jù)所查閱的文獻(xiàn)資料 撰寫 1000 字以上的文獻(xiàn)綜述 沖壓加工是現(xiàn)代機(jī)械制造業(yè)中先進(jìn) 高效的加工方法之一 它是在室溫下 利用安裝在壓力機(jī)上的模具對材料施加壓力 使其產(chǎn)生分離或塑性變形 從而 獲得所需零件的一種壓力加工方法 由于沖壓加工通常是在室溫下進(jìn)行的 所 以常常稱為冷沖壓 又由于它的加工材料主要是板料 所以又稱板料加工 沖 壓不但可以加工金屬材料 還可以加工非金屬材料 1 在沖壓加工中 將材料加工成沖壓零件 或半成品 的一種專用工藝裝備 稱為沖壓模具或冷沖壓 沖壓模具在實(shí)現(xiàn)沖壓加工中是必不可少的工藝裝備 沒有符合要求的沖壓模具 沖壓加工就無法進(jìn)行 先進(jìn)的沖壓工藝也就無法實(shí)現(xiàn) 沖模設(shè)計是冷沖壓加工的關(guān)鍵 一個沖壓零件往往要用幾副模具才能加工成形 按照中國模具工業(yè)協(xié)會的劃分 我國模具基本分為 10 大類 其中 沖壓模 具占主要部分 按產(chǎn)值計算 目前我國沖壓模占 50 左右 我國沖壓模大多數(shù)為簡單模 單工序模和復(fù)合模等 精沖模 精密多工位 級進(jìn)模還為數(shù)不多 模具平均壽命不足 100 萬次 模具最高壽命可達(dá) 1 億次以 上 精度達(dá)到 3 5 m 有 50 個以上的級進(jìn)工位 與國際上最高模具壽命 6 億 次 平均模具壽命 5000 萬次 精度達(dá)到 2 3 m 相比 處于 20 世紀(jì) 80 年代中 期國際先進(jìn)水平 2 5 近十多年來 隨著對發(fā)展先進(jìn)制造技術(shù)的重要性獲得前所未有的共識 沖 壓成形技術(shù)無論在深度和廣度上都取得了前所未有的進(jìn)展 其特征是與高新技 術(shù)結(jié)合 在方法和體系上開始發(fā)生很大變化 計算機(jī)技術(shù) 信息技術(shù) 現(xiàn)代測 控技術(shù)等沖壓領(lǐng)域的滲透與交叉融合 推動了先進(jìn)沖壓成形技術(shù)的形成和發(fā)展 沖壓模具設(shè)計與制造技術(shù)正在由手工設(shè)計 依靠人工經(jīng)驗(yàn)和常規(guī)機(jī)械加工技術(shù) 向以計算機(jī)輔助設(shè)計 CAD 數(shù)控切削加工 數(shù)控電加工為核心的計算機(jī)輔 助設(shè)計和制造 CAD CAM 技術(shù)轉(zhuǎn)變 6 模具 CAD CAM CAE 技術(shù)是模具設(shè)計制造的發(fā)展方向 隨著微機(jī)軟件的發(fā) 展和進(jìn)步 普及 CAD CAM CAE 技術(shù)的條件已基本成熟 各企業(yè)正加大 CAD CAM 技術(shù)培訓(xùn)和技術(shù)服務(wù)的力度 進(jìn)一步擴(kuò)大 CAE 技術(shù)的應(yīng)用范圍 一 些國內(nèi)模具企業(yè)已普及了二維 CAD 并陸續(xù)開始使用 Pro E PDX UG NX NX Progressive Die Design I DEAS Euclid IS Logopress3 3DQuickPress MoldWorks 和 Topsolid Progress 等國際通用軟 件 個別廠家還引進(jìn)了 Moldflow C Flow DYNAFORM Optris 和 MAGMASOFT 等 CAE 軟件 并成功應(yīng)用于沖壓模的設(shè)計中 7 國外的主要工業(yè)國家也廣泛推廣計算機(jī)數(shù)控 CNC 系統(tǒng) 以控制沖壓加工 程序 工藝參數(shù)的變更及其材料的更換等 在多品種 小批量生產(chǎn)中已出現(xiàn)以 成組加工為原理的 群控 自動化沖壓工藝 不再是一臺計算機(jī)直接控制多臺 機(jī)器 而是多臺計算機(jī)分級管理 控制多臺機(jī)器 主要參考文獻(xiàn) 1 鐘翔山 冷沖壓模具設(shè)計案例剖析 M 北京 機(jī)械工業(yè)出版社 2009 7 23 24 2 楊占堯 沖壓工藝編制與模具設(shè)計制造 M 北京 人民郵電出版社 2010 4 46 47 3 許洪斌 文琍 模具制造技術(shù) M 北京 化工工業(yè)出版社 2007 64 4 肖景容 姜奎華 沖壓工藝學(xué) M 北京 機(jī)械工業(yè)出版社 1988 53 55 5 李奇涵 沖壓成形工藝與模具設(shè)計 M 北京 科學(xué)出版社 2007 33 34 6 周本凱 冷沖壓模具設(shè)計精要 M 北京 化學(xué)工業(yè)出版社 2009 6 7 7 王孝培 沖壓手冊 M 北京 機(jī)械工業(yè)出版社 1988 66 67 2 選題依據(jù) 主要研究內(nèi)容 研究思路及方案 2 1 選題依據(jù) 選題符合本專業(yè)培養(yǎng)目標(biāo)和教學(xué)的基本要求 可以鍛煉我們在所學(xué)專業(yè)的 基礎(chǔ)上綜合運(yùn)用所學(xué)的知識 技能以及解決產(chǎn)品從設(shè)計到加工的一系列問題的 能力 選題具有技術(shù)先進(jìn)性 實(shí)用性 工藝性和可行性 該選題結(jié)合生產(chǎn)和社會 實(shí)踐 是具有實(shí)際應(yīng)用價值的的課題 可以增強(qiáng)我們將理論結(jié)合實(shí)踐的能力 選題既注意課題內(nèi)容的先進(jìn)性和經(jīng)濟(jì)上的可行性 又符合我們大學(xué)生實(shí)際 能力 既有理論分析 設(shè)計計算 又有二維作圖 2 2 主要研究內(nèi)容 圖 1 工件簡圖 在熟悉沖壓工藝的基礎(chǔ)上 設(shè)計中錐形件沖壓成形工藝 零件簡圖 1 及設(shè) 計要求如下 此工件的材料為 08 鋼 厚度為 3 5mm 大批量生產(chǎn) 沒有特殊的精度要求 1 設(shè)計沖壓成形此零件所用的拉深模 設(shè)計生產(chǎn)工藝卡 2 繪制拉深模的二維工程圖及零件圖 3 編寫畢業(yè)設(shè)計說明書 2 3 研究思路及方案 研究一般思路 沖壓件工藝性分析 沖壓工藝方案制定 主要工藝參數(shù)計 算 計算工序沖壓力和選擇沖壓設(shè)備 模具結(jié)構(gòu)形式的確定 編寫沖壓過程工 藝卡片等 研究方案 該工件結(jié)構(gòu)較簡單 形狀對稱 完全由圓弧和直線組成 利用普通沖裁方 法可以達(dá)到工件圖樣要求 工件材料為 08 鋼 此材料具有良好的結(jié)構(gòu)強(qiáng)度和塑 性 其沖裁和拉伸加工性較好 該錐形件的相對高度 h D 0 41 可知此件屬于 中等深度錐形件 且毛坯的相對厚度 t D0 100 1 89 在 1 5 到 2 之間 可采 用一次拉伸完成 但因材料較薄 為防止起皺 需采用壓邊圈 拉深筋 增加 工藝凸緣等措施提高徑向拉應(yīng)力 工件包括落料 拉深兩個工序 方案一 先落料后拉深 分別采用單工序模生產(chǎn) 方案二 先拉深后落料 分別采用單工序模生產(chǎn) 方案三 先拉深后落料 采用級進(jìn)模生產(chǎn) 方案四 落料 拉深復(fù)合沖壓 采用復(fù)合模生產(chǎn) 在以上四種沖壓方案中 方案一和方案二模具結(jié)構(gòu)簡單 但都需要兩道工 序 兩副模具 生產(chǎn)效率低 工人勞動強(qiáng)度大 難以滿足大批量生產(chǎn)要求 并 且方案一先落料后拉深 拉深的過程中因材料較薄 易起皺 在進(jìn)行第二道工 序時 模具又很難精確定位 沖出的制件精度一般 適應(yīng)于精度要求不高的制 件 而且對零件的尺寸和厚度都沒有限制 方案三級進(jìn)模生產(chǎn) 雖然減少了產(chǎn) 品的沖壓成形時間 但是考慮到零件拉深工藝的復(fù)雜性 模具結(jié)構(gòu)較為復(fù)雜且 精度要求高 制造周期長 制模成本高 加工也不方便 故亦不宜采用 第四 種方案只需一副模具 落料拉深復(fù)合模 其模具結(jié)構(gòu)雖然比單工序模復(fù)雜 但 沖壓件的行位精度和尺寸精度容易保證 且生產(chǎn)批量大時 應(yīng)該盡可能的把工 序集中起來 以提高生產(chǎn)率 降低成本 根據(jù)設(shè)計需要和生產(chǎn)批量的要求 對上述三種方案分析比較 該件的沖壓 生產(chǎn)采用方案四為佳 即拉深 落料在一套復(fù)合模中完成 既能保證大批量生 產(chǎn)的高效率 又能保證加工精度 而且成本不高 經(jīng)濟(jì)合理 但在實(shí)際生產(chǎn)中 為保證在整個拉深過程都有足夠的壓邊力 需將毛坯直徑放大 拉完后再將多 余部分材料切去 故經(jīng)過初步研究分析 結(jié)合實(shí)際情況 應(yīng)該設(shè)計兩套模具 第一套模具 完成落料 拉深復(fù)合沖壓 第二套模具 對前道工序中的制件進(jìn)行切邊 3 工作進(jìn)度及具體安排 起止日期 工 作 內(nèi) 容 2012 年 12 月 完成開題報告 2013 年 1 4 周 實(shí)習(xí) 了解工作條件和收集原始數(shù)據(jù) 制 定初步設(shè)計方案 征求意見 2013 年 5 6 周 查閱與畢業(yè)設(shè)計課題內(nèi)容相關(guān)的文獻(xiàn)資料 完成方案設(shè)計 2013 年 7 8 周 分析 優(yōu)化結(jié)構(gòu) 校核主要零件強(qiáng)度 修 改不合理結(jié)構(gòu) 完成設(shè)計 校核 2013 年 9 12 周 工程圖制作 出圖 2013 年 13 14 周 編寫設(shè)計說明書 指導(dǎo)教師批改 2013 年 15 16 周 設(shè)計說明書修改 定稿 打印 總結(jié)材料 準(zhǔn)備答辯 4 指導(dǎo)教師意見 對課題方案的可行性 深度 廣度及工作量的意見 該課題內(nèi)容為中錐零件成形工藝分析及模具設(shè)計 該件的成形主要由一套 復(fù)合模具以及一套單工序模兩套模具 落料拉深復(fù)合模和切邊模 來實(shí)現(xiàn) 整 個模具的設(shè)計工作過程 首先 通過對中錐零件進(jìn)行了工藝性的分析 提出了 比較可行的工藝方案 并在此基礎(chǔ)上來設(shè)計相應(yīng)的制造模具 以上工作的完成 可以提高該學(xué)生對沖壓模具結(jié)構(gòu)設(shè)計能力 更加深入地理解沖壓模具內(nèi)部結(jié)構(gòu) 與工作原理 采用 AUTOCAD 和手工繪制模具和零件圖紙 可以鍛煉該學(xué)生的 圖紙繪制能力 整個畢業(yè)設(shè)計的工作量已經(jīng)超過三張 A0 的圖紙量 工作量比 較飽滿 指導(dǎo)教師 20 年 月 日 5 教研室意見 教研室主任 年 月 日 畢業(yè)設(shè)計 論文 中期報告 系 部 機(jī)電工程系 班級 學(xué)生姓名 指導(dǎo)教師 課題名稱 中錐零件成形工藝分析及模具設(shè)計 課題主要任務(wù) 1 在熟悉沖壓工藝的基礎(chǔ)上 設(shè)計中錐形件沖壓成形工藝 2 設(shè)計沖壓成形此零件所用的拉深模 設(shè)計生產(chǎn)工藝卡 3 繪制拉深模的二維工程圖及零件圖 1 簡述開題以來所做的具體工作和取得的進(jìn)展或成果 1 撰寫了開題報告 2 第一套模具方案的確定 包括計算毛坯尺寸 拉深次數(shù)以及修邊余量 排樣形式以及計算材 料利用率 計算工藝力并根據(jù)工藝力大小選擇壓力機(jī) 計算落料凸凹模刃口尺寸 確定拉深 凹模圓角半徑 確定拉深凸凹模的單面間隙 工作零件結(jié)構(gòu)尺寸等的確定 3 繪制第一套模具的裝配圖 4 第二套模具方案的確定 包括計算工藝力并根據(jù)工藝力大小選擇壓力機(jī) 計算切邊凸凹模刃 口尺寸 模具各部分工作零件結(jié)構(gòu)尺寸等的確定 5 繪制第二套模具的裝配圖 2 下一步的主要研究任務(wù) 具體設(shè)想與安排 1 計劃兩周內(nèi)完成兩套模具的零件圖和說明書 2 最后一周完成手繪圖 檢查設(shè)計內(nèi)容并準(zhǔn)備畢業(yè)答辯 3 存在的具體問題 1 在第一套模具的設(shè)計過程中 為順利取件要求模架的展開高度比較大 沒有足夠長的標(biāo)準(zhǔn)導(dǎo) 柱可選 在老師的指導(dǎo)下 在滿足模具運(yùn)動及閉合要求的前提下 按照沖壓手冊里的標(biāo)準(zhǔn)導(dǎo) 向零件自行設(shè)計導(dǎo)柱相應(yīng)尺寸 并改選能提供更大的裝模高度的壓力機(jī) 2 彈簧與橡膠卸料裝置在第一套模具中不適用 在老師的指導(dǎo)下 我修改了以前的設(shè)計 改為 剛性卸料 4 指導(dǎo)教師對該生前期研究工作的評價 該學(xué)生畢業(yè)設(shè)計期間工作特別踏實(shí) 也特別勤奮和認(rèn)真 在工作中遇到不懂的地方 能夠虛心 向同組的同學(xué)請教 善于思考 能夠舉一反三 對于別人提出的建議 能夠虛心聽取 注重理論 和實(shí)踐相結(jié)合 將大學(xué)所學(xué)的課堂知識能有效地運(yùn)用于畢業(yè)設(shè)計工作中 認(rèn)真聽取老師的指導(dǎo)意 見 同時 該生在畢業(yè)設(shè)計指導(dǎo)期間 未曾出現(xiàn)過無故缺勤現(xiàn)象 對該生前期研究工作表示充分 肯可 指導(dǎo)教師簽名 日 期 屆畢業(yè)設(shè)計 論文 指導(dǎo)教師評閱表 系 部 機(jī)電工程系 學(xué)生姓名 學(xué) 號 班 級 專 業(yè) 材料成型及控制工程 指導(dǎo)教師姓名 課題名稱 中錐零件成形工藝分析及模具設(shè)計 評語 包括以下方面 學(xué)習(xí)態(tài)度 工作量完成情況 材料的完整性和規(guī)范性 檢索和利用文獻(xiàn)能力 計算機(jī)應(yīng)用能力 學(xué)術(shù)水平或設(shè)計水平 綜合運(yùn)用知識能力和創(chuàng)新能力 該學(xué)生畢業(yè)設(shè)計期間工作特別踏實(shí) 也特別勤奮和認(rèn)真 在工作中遇到不懂的地方 能 夠虛心向同組的同學(xué)請教 善于思考 能夠舉一反三 對于別人提出的建議 能夠虛心聽取 注重理論和實(shí)踐相結(jié)合 將大學(xué)所學(xué)的課堂知識能有效地運(yùn)用于畢業(yè)設(shè)計工作中 認(rèn)真聽取 老師的指導(dǎo)意見 整個畢業(yè)設(shè)計的工作量已經(jīng)超過三張 A0 的圖紙量 工作量比較飽滿 答 辯材料完整 設(shè)計說明書規(guī)范 已經(jīng)能夠熟練使用 AUTOCAD 繪制模具圖紙 能夠獨(dú)立思考 和解決問題 但創(chuàng)新能力還需要進(jìn)一步加強(qiáng) 選題與文獻(xiàn)綜述 20 分 分值 16 創(chuàng)新性 15 分 分值 11 基礎(chǔ)理論和專門知識 35 分 分值 28 作者寫作 表達(dá)能力 30 分 分值 25 合 計 分值 80 是否同意參加答辯 是 否 指導(dǎo)教師簽字 年 月 日 說明 各項成績的百分比由各系部自己確定 但應(yīng)控制在給定標(biāo)準(zhǔn)的 20 左右 畢業(yè)設(shè)計 論文 評閱教師評閱表 系 部 機(jī)電工程系 學(xué)生姓名 學(xué) 號 班 級 專 業(yè) 材料成型及控制工程 評閱教師姓名 課 題 中錐零件成形工藝分析及模具設(shè)計 評語 對論文學(xué)術(shù)評語 包括選題意義 文獻(xiàn)利用能力 所用資料可靠性 創(chuàng)新成果及寫作規(guī)范化和邏 輯性 通過評閱萬娣提交的畢業(yè)設(shè)計資料 本人認(rèn)為 1 選題符合本專業(yè)培養(yǎng)目標(biāo)的要求 適合作為畢業(yè)設(shè)計的選題 具有對本專業(yè)知識 能力的綜合訓(xùn)練作用 2 提供了中錐零件的沖壓工藝及兩套模具圖 落料拉深復(fù)合模 切邊模 沖壓工藝可 行 兩套模具的總體結(jié)構(gòu)合理 裝配圖和零件圖的設(shè)計 繪圖質(zhì)量較好 繪圖工作量達(dá)到了 要求 零件圖中技術(shù)要求的制訂等問題還值得斟酌 3 設(shè)計計算說明書的撰寫比較認(rèn)真 內(nèi)容比較詳實(shí) 反映了設(shè)計計算過程 4 制訂了落料凸模等幾個零件的機(jī)械加工工藝 但合理性還可商榷 總之 該生畢業(yè)設(shè)計態(tài)度認(rèn)真 資料齊全 完成質(zhì)量較好 選題與文獻(xiàn)綜述 20 分 分值 17 創(chuàng)新性 15 分 分值 8 基礎(chǔ)理論和專門知識 35 分 分值 30 作者寫作 表達(dá)能力 30 分 分值 25 合 計 分值 80 是否同意參加答辯 是 否 評閱人 簽名 2013 年 6 月 6 日 說明 各項成績的百分比由各系部自己確定 但應(yīng)控制在給定標(biāo)準(zhǔn)的 20 左右 畢業(yè)設(shè)計 論文 答辯評審表 學(xué)生 姓名 學(xué)號 班級 答辯 日期 課題 名稱 中錐零件成形工藝分析及模具設(shè)計 指導(dǎo) 教師 地點(diǎn) 姓 名 職務(wù) 職稱 姓 名 職務(wù) 職稱 姓 名 職務(wù) 職稱 郭惠昕 教授 何航敏 助教 李國峰 教授 劉煜 副教授 胡冠昱 副教授 張昊 副教授 答 辯 小 組 成 員 姚瑤 助教 答辯中提出的主要問題及回答的簡要情況記錄 1 設(shè)計中增加切邊工序的意義 答 工件在進(jìn)行拉深工序時 外圍形狀和尺寸不可避免會發(fā)生變化 設(shè)置切邊余量 增 加切邊工序在保證壓邊力的同時更保證了零件的外尺寸 2 第一套模具的彈頂器下端設(shè)計兩個螺母的目的 答 既可以起到防松的作用 又可以調(diào)整壓邊力 3 拉深凸模處出氣孔的設(shè)計是否有必要 答 一般筒形件在拉深過程中都需要在拉深凸模上設(shè)計出氣孔 本次畢業(yè)設(shè)計的工件為 錐形件 拉深時的包緊力會比相應(yīng)尺寸的筒形件小很多 故出氣孔的設(shè)計可有可無 4 第一套模具不用彈性卸料板的原因 答 因?yàn)橄履5耐萍K和拉深凹模一起可以起到拉深時壓料的作用 考慮到使模具結(jié)構(gòu) 簡單且板料比較厚 故選擇了剛性卸料板 會議主持人 記 錄 人 年 月 日 評 定 評定內(nèi)容 分 值 教師 1 教師 2 教師 3 教師 4 教師 5 教師 6 教師 7 報 告 內(nèi) 容 思路清新 語言表達(dá)準(zhǔn) 確 概念清楚 論點(diǎn)正 確 實(shí)驗(yàn)方法科學(xué) 分 析歸納合理 結(jié)論嚴(yán)謹(jǐn) 論文 設(shè)計 有應(yīng)用價 值 40 34 32 30 34 32 報 告 過 程 準(zhǔn)備工作充分 具備必 要的報告影象資料 報 告在規(guī)定的時間內(nèi)作完 報告 10 8 8 8 8 8 答辯成績評定 答 辯 回答問題有理論依據(jù) 基本概念清楚 主要問 題回答簡明準(zhǔn)確 50 42 39 37 42 42 合 計 100 84 79 75 84 82 答辯平均得分 81 答辯小組長簽名 答辯評 分 分值 81 答辯成績 A 答辯評分 35 28 4 指導(dǎo)教 師評分 分值 80 指導(dǎo)教師評定成績 B 指導(dǎo)教師評分 50 40 評閱教 師評分 分值 80 評閱教師評定成績 C 評閱教師評分 15 12 最終評 定成績 分?jǐn)?shù) 80 等級 良好 教學(xué)系主任簽名 2013 年 6 月 10 日 說明 最終評定成績 A B C 三個成績的百分比由各系部自己確定 但應(yīng)控制在給定標(biāo)準(zhǔn)的 20 左右 第 0 頁 共 27 頁 Process simulation in stamping recent applications for product and process design Abstract Process simulation for product and process design is currently being practiced in industry However a number of input variables have a significant effect on the accuracy and reliability of computer predictions A study was conducted to evaluate the capability of FE simulations for predicting part characteristics and process conditions in forming complex shaped industrial parts In industrial applications there are two objectives for conducting FE simulations of the stamping process 1 to optimize the product design by analyzing formability at the product design stage and 2 to reduce the tryout time and cost in process design by predicting the deformation process in advance during the die design stage For each of these objectives two kinds of FE simulations are applied Pam Stamp an incremental dynamic explicit FEM code released by Engineering Systems Int l matches the second objective well because it can deal with most of the practical stamping parameters FAST FORM3D a one step FEM code released by Forming Technologies matches the first objective because it only requires the part geometry and not the complex process information In a previous study these two FE codes were applied to complex shaped parts used in manufacturing automobiles and construction machinery Their capabilities in predicting formability issues in stamping were evaluated This paper reviews the results of this study and summarizes the recommended procedures for obtaining accurate and reliable results from FE simulations In another study the effect of controlling the blank holder force BHF during the deep drawing of hemispherical dome bottomed cups was investigated The standard automotive aluminum killed drawing quality AKDQ steel was used as well as high performance materials such as high strength steel bake hard steel and aluminum 6111 It was determined that varying the BHF as a function of stroke improved the strain distributions in the domed cups Keywords Stamping Process stimulation Process design 第 1 頁 共 27 頁 1 Introduction The design process of complex shaped sheet metal stampings such as automotive panels consists of many stages of decision making and is a very expensive and time consuming process Currently in industry many engineering decisions are made based on the knowledge of experienced personnel and these decisions are typically validated during the soft tooling and prototyping stage and during hard die tryouts Very often the soft and hard tools must be reworked or even redesigned and remanufactured to provide parts with acceptable levels of quality The best case scenario would consist of the process outlined in Fig 1 In this design process the experienced product designer would have immediate feedback using a specially design software called one step FEM to estimate the formability of their design This would allow the product designer to make necessary changes up front as opposed to down the line after expensive tooling has been manufactured One step FEM is particularly suited for product analysis since it does not require binder addendum or even most process conditions Typically this information is not available during the product design phase One step FEM is also easy to use and computationally fast which allows the designer to play what if without much time investment Fig 1 Proposed design process for sheet metal stampings Once the product has been designed and validated the development project would enter the time zero phase and be passed onto the die designer The die designer would validate his her design with an incremental FEM code and make necessary design changes and perhaps even optimize the process parameters to ensure not just minimum acceptability of part quality but maximum achievable quality This increases product quality but also increase process robustness Incremental FEM is particularly suited for die design analysis since it does require binder addendum and process conditions which are either known during die design or desired to be known The validated die design would then be manufactured directly into the hard production tooling and be validated with physical tryouts during which the prototype parts would be made Tryout time should be decreased due to the earlier numerical validations Redesign and remanufacturing of the tooling due to unforeseen forming problems should be a thing of the past The decrease in tryout time and elimination of redesign remanufacturing should more than make up for the time used to numerically validate the part die and process 第 2 頁 共 27 頁 Optimization of the stamping process is also of great importance to producers of sheet stampings By modestly increasing one s investment in presses equipment and tooling used in sheet forming one may increase one s control over the stamping process tremendously It has been well documented that blank holder force is one of the most sensitive process parameters in sheet forming and therefore can be used to precisely control the deformation process By controlling the blank holder force as a function of press stroke AND position around the binder periphery one can improve the strain distribution of the panel providing increased panel strength and stiffness reduced springback and residual stresses increased product quality and process robustness An inexpensive but industrial quality system is currently being developed at the ERC NSM using a combination of hydraulics and nitrogen and is shown in Fig 2 Using BHF control can also allow engineers to design more aggressive panels to take advantage the increased formability window provided by BHF control Fig 2 Blank holder force control system and tooling being developed at the ERC NSM labs Three separate studies were undertaken to study the various stages of the design process The next section describes a study of the product design phase in which the one step FEM code FAST FORM3D Forming Technologies was validated with a laboratory and industrial part and used to predict optimal blank shapes Section 4 summarizes a study of the die design stage in which an actual industrial panel was used to validate the incremental FEM code Pam Stamp Engineering Systems Int l Section 5 covers a laboratory study of the effect of blank holder force control on the strain distributions in deep drawn hemispherical dome bottomed cups 2 Product simulation applications The objective of this investigation was to validate FAST FORM3D to determine FAST FORM3D s blank shape prediction capability and to determine how one step FEM can be implemented into the product design process Forming Technologies has provided their one step FEM code FAST FORM3D and training to the ERC NSM for the purpose of benchmarking and research FAST FORM3D does not simulate the deformation history Instead it projects the final part geometry onto a flat plane or developable surface and repositions the nodes and elements until a minimum energy state is reached This process is computationally faster than incremental simulations like Pam Stamp but also makes more assumptions FAST FORM3D can evaluate formability and estimate optimal blank geometries and is a strong tool for product designers due to its speed and ease of use particularly during the stage when the die geometry is not available 第 3 頁 共 27 頁 In order to validate FAST FORM3D we compared its blank shape prediction with analytical blank shape prediction methods The part geometry used was a 5 in deep 12 in by 15 in rectangular pan with a 1 in flange as shown in Fig 3 Table 1 lists the process conditions used Romanovski s empirical blank shape method and the slip line field method was used to predict blank shapes for this part which are shown in Fig 4 Fig 3 Rectangular pan geometry used for FAST FORM3D validation Table 1 Process parameters used for FAST FORM3D rectangular pan validation Fig 4 Blank shape design for rectangular pans using hand calculations a Romanovski s empirical method b slip line field analytical method Fig 5 a shows the predicted blank geometries from the Romanovski method slip line field method and FAST FORM3D The blank shapes agree in the corner area but differ greatly in the side regions Fig 5 b c show the draw in pattern after the drawing process of the rectangular pan as simulated by Pam Stamp for each of the predicted blank shapes The draw in patterns for all three rectangular pans matched in the corners regions quite well The slip line field method though did not achieve the objective 1 in flange in the side region while the Romanovski and FAST FORM3D 第 4 頁 共 27 頁 methods achieved the 1 in flange in the side regions relatively well Further only the FAST FORM3D blank agrees in the corner side transition regions Moreover the FAST FORM3D blank has a better strain distribution and lower peak strain than Romanovski as can be seen in Fig 6 Fig 5 Various blank shape predictions and Pam Stamp simulation results for the rectangular pan a Three predicted blank shapes b deformed slip line field blank c deformed Romanovski blank d deformed FAST FORM3D blank Fig 6 Comparison of strain distribution of various blank shapes using Pam Stamp for the rectangular pan a Deformed Romanovski blank b deformed FAST FORM3D blank To continue this validation study an industrial part from the Komatsu Ltd was chosen and is shown in Fig 7 a We predicted an optimal blank geometry with FAST FORM3D and compared it with the experimentally developed blank shape as shown in Fig 7 b As seen the blanks are similar but have some differences Fig 7 FAST FORM3D simulation results for instrument cover validation a FAST FORM3D s formability evaluation b comparison of predicted and experimental blank geometries Next we simulated the stamping of the FAST FORM3D blank and the experimental blank using Pam Stamp We compared both predicted geometries to the nominal CAD geometry Fig 8 and found that the FAST FORM3D geometry was much 第 5 頁 共 27 頁 more accurate A nice feature of FAST FORM3D is that it can show a failure contour plot of the part with respect to a failure limit curve which is shown in Fig 7 a In conclusion FAST FORM3D was successful at predicting optimal blank shapes for a laboratory and industrial parts This indicates that FAST FORM3D can be successfully used to assess formability issues of product designs In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Fig 8 Comparison of FAST FORM3D and experimental blank shapes for the instrument cover a Experimentally developed blank shape and the nominal CAD geometry b FAST FORM3D optimal blank shape and the nominal CAD geometry 3 Die and process simulation applications In order to study the die design process closely a cooperative study was conducted by Komatsu Ltd of Japan and the ERC NSM A production panel with forming problems was chosen by Komatsu This panel was the excavator s cabin left hand inner panel shown in Fig 9 The geometry was simplified into an experimental laboratory die while maintaining the main features of the panel Experiments were conducted at Komatsu using the process conditions shown in Table 2 A forming limit diagram FLD was developed for the drawing quality steel using dome tests and a vision strain measurement system and is shown in Fig 10 Three blank holder forces 10 30 and 50 ton were used in the experiments to determine its effect Incremental simulations of each experimental condition was conducted at the ERC NSM using Pam Stamp Fig 9 Actual product cabin inner panel Table 2 Process conditions for the cabin inner investigation 第 6 頁 共 27 頁 Fig 10 Forming limit diagram for the drawing quality steel used in the cabin inner investigation At 10 ton wrinkling occurred in the experimental parts as shown in Fig 11 At 30 ton the wrinkling was eliminated as shown in Fig 12 These experimental observations were predicted with Pam stamp simulations as shown in Fig 13 The 30 ton panel was measured to determine the material draw in pattern These measurements are compared with the predicted material draw in in Fig 14 Agreement was very good with a maximum error of only 10 mm A slight neck was observed in the 30 ton panel as shown in Fig 13 At 50 ton an obvious fracture occurred in the panel Fig 11 Wrinkling in laboratory cabin inner panel BHF 10 ton Fig 12 Deformation stages of the laboratory cabin inner and necking BHF 30 ton a Experimental blank b experimental panel 60 formed c experimental panel fully formed 第 7 頁 共 27 頁 d experimental panel necking detail Fig 13 Predication and elimination of wrinkling in the laboratory cabin inner a Predicted geometry BHF 10 ton b predicted geometry BHF 30 ton Fig 14 Comparison of predicted and measured material draw in for lab cabin inner BHF 30 ton Strains were measured with the vision strain measurement system for each panel and the results are shown in Fig 15 The predicted strains from FEM simulations for each panel are shown in Fig 16 The predictions and measurements agree well regarding the strain distributions but differ slightly on the effect of BHF Although the trends are represented the BHF tends to effect the strains in a more localized manner in the simulations when compared to the measurements Nevertheless these strain prediction show that Pam Stamp correctly predicted the necking and fracture which occurs at 30 and 50 ton The effect of friction on strain distribution was also 第 8 頁 共 27 頁 investigated with simulations and is shown in Fig 17 Fig 15 Experimental strain measurements for the laboratory cabin inner a measured strain BHF 10 ton panel wrinkled b measured strain BHF 30 ton panel necked c measured strain BHF 50 ton panel fractured Fig 16 FEM strain predictions for the laboratory cabin inner a Predicted strain BHF 10 ton b predicted strain BHF 30 ton c predicted strain BHF 50 ton Fig 17 Predicted effect of friction for the laboratory cabin inner BHF 30 ton a Predicted strain 0 06 b predicted strain 0 10 A summary of the results of the comparisons is included in Table 3 This table shows that the simulations predicted the experimental observations at least as well as the strain measurement system at each of the experimental conditions This indicates that Pam Stamp can be used to assess formability issues associated with the die design Table 3 Summary results of cabin inner study 4 Blank holder force control applications 第 9 頁 共 27 頁 The objective of this investigation was to determine the drawability of various high performance materials using a hemispherical dome bottomed deep drawn cup see Fig 18 and to investigate various time variable blank holder force profiles The materials that were investigated included AKDQ steel high strength steel bake hard steel and aluminum 6111 see Table 4 Tensile tests were performed on these materials to determine flow stress and anisotropy characteristics for analysis and for input into the simulations see Fig 19 and Table 5 Fig 18 Dome cup tooling geometry Table 4 Material used for the dome cup study Fig 19 Results of tensile tests of aluminum 6111 AKDQ high strength and bake hard steels a Fractured tensile specimens b Stress strain curves Table 5 Tensile test data for aluminum 6111 AKDQ high strength and bake hard steels 第 10 頁 共 27 頁 It is interesting to note that the flow stress curves for bake hard steel and AKDQ steel were very similar except for a 5 reduction in elongation for bake hard Although the elongations for high strength steel and aluminum 6111 were similar the n value for aluminum 6111 was twice as large Also the r value for AKDQ was much bigger than 1 while bake hard was nearly 1 and aluminum 6111 was much less than 1 The time variable BHF profiles used in this investigation included constant linearly decreasing and pulsating see Fig 20 The experimental conditions for AKDQ steel were simulated using the incremental code Pam Stamp Examples of wrinkled fractured and good laboratory cups are shown in Fig 21 as well as an image of a simulated wrinkled cup 第 11 頁 共 27 頁 Fig 20 BHF time profiles used for the dome cup study a Constant BHF b ramp BHF c pulsating BHF Fig 21 Experimental and simulated dome cups a Experimental good cup b experimental fractured cup c experimental wrinkled cup d simulated wrinkled cup Limits of drawability were experimentally investigated using constant BHF The results of this study are shown in Table 6 This table indicates that AKDQ had the largest drawability window while aluminum had the smallest and bake hard and high strength steels were in the middle The strain distributions for constant ramp and pulsating BHF are compared experimentally in Fig 22 and are compared with simulations in Fig 23 for AKDQ In both simulations and experiments it was found that the ramp BHF trajectory improved the strain distribution the best Not only were peak strains reduced by up to 5 thereby reducing the possibility of fracture but low strain regions were increased This improvement in strain distribution can increase product stiffness and strength decrease springback and residual stresses increase product quality and process robustness Table 6 Limits of drawability for dome cup with constant BHF Fig 22 Experimental effect of time variable BHF on engineering strain in an AKDQ steel dome cup 第 12 頁 共 27 頁 Fig 23 Simulated effect of time variable BHF on true strain in an AKDQ steel dome cup Pulsating BHF at the frequency range investigated was not found to have an effect on strain distribution This was likely due to the fact the frequency of pulsation that was tested was only 1 Hz It is known from previous experiments of other researchers that proper frequencies range from 5 to 25 Hz 3 A comparison of load stroke curves from simulation and experiments are shown in Fig 24 for AKDQ Good agreement was found for the case where 0 08 This indicates that FEM simulations can be used to assess the formability improvements that can be obtained by using BHF control techniques Fig 24 Comparison of experimental and simulated load stroke curves for an AKDQ steel dome cup 5 Conclusions and future work In this paper we evaluated an improved design process for complex stampings which involved eliminating the soft tooling phase and incorporated the validation of product and process using one step and incremental FEM simulations Also process improvements were proposed consisting of the implementation of blank holder force control to increase product quality and process robustness Three separate investigations were summarized which analyzed various stages in the design process First the product design phase was investigated with a laboratory and industrial validation of the one step FEM code FAST FORM3D and its ability to assess formability issues involved in product design FAST FORM3D was successful at predicting optimal blank shapes for a rectangular pan and an industrial instrument cover In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Second the die design phase was investigated with a laboratory and industrial validation of the incremental code Pam Stamp and its ability to assess forming issues associated with die design This investigation suggested that Pam Stamp could predict strain distribution wrinkling necking and fracture at least as well as a vision strain 第 13 頁 共 27 頁 measurement system at a variety of experimental conditions Lastly the process design stage was investigated with a laboratory study of the quality improvements that can be realized with the implementation of blank holder force control techniques In this investigation peak strains in hemispherical dome bottomed deep drawn cups were reduced by up to 5 thereby reducing the possibility of fracture and low strain regions were increased This improvem