2018年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)模擬演練 圓
-
資源ID:81284521
資源大?。?span id="mzebxcnn0" class="font-tahoma">259KB
全文頁(yè)數(shù):11頁(yè)
- 資源格式: DOC
下載積分:22積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2018年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)模擬演練 圓
圓
一、選擇題
1.下列說(shuō)法正確的是( )
A. 頂點(diǎn)在圓上的角是圓周角 B. 兩邊都和圓相交的角是圓周角
C. 圓心角是圓周角的2倍 D. 圓周角度數(shù)等于它所對(duì)圓心角度數(shù)的一半
【答案】D
2.如圖,已知圓心角∠BOC=120°,則圓周角∠BAC的大小是( )
A. 60° B. 80° C. 100° D. 120°
【答案】A
3.已知圓錐的底面半徑為1cm,母線(xiàn)長(zhǎng)為3cm,則其全面積為( )
A. π B. 3π C. 4π D. 7π
【答案】C
4.如圖,小明為檢驗(yàn)M、N、P、Q四點(diǎn)是否共圓,用尺規(guī)分別作了MN、MQ的垂直平分線(xiàn)交于點(diǎn)O,則M、N、P、Q四點(diǎn)中,不一定在以O(shè)為圓心,OM為半徑的圓上的點(diǎn)是( ?。?
A. 點(diǎn)M B. 點(diǎn)N C. 點(diǎn)P D. 點(diǎn)Q
【答案】C
5.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個(gè)圓心角為90°的扇形,將剪下的扇形圍成一個(gè)圓錐,圓錐的高是( )m.
A. 4 B. 5 C. D. 2
【答案】C
6.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AD與BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,BA與CD的延長(zhǎng)線(xiàn)交于點(diǎn)F,∠DCE=80°,∠F=25°,則∠E的度數(shù)為( )
A.55° B.50° C.45° D.40°
【答案】C
7.已知⊙O的半徑為3,△ABC內(nèi)接于⊙O,AB=3 ,AC=3 ,D是⊙O上一點(diǎn),且AD=3,則CD的長(zhǎng)應(yīng)是( )
A. 3 B. 6 C. D. 3或6
【答案】D
8.如圖,⊙O是△ABC的內(nèi)切圓,D,E,F(xiàn)是切點(diǎn),∠A=50°,∠C=60°,則∠DOE=( )
A. 70° B. 110° C. 120° D. 130°
【答案】B
9.如圖,AB是⊙O的直徑,C,D為圓上兩點(diǎn),∠AOC =130°,則∠D等于( )
A. 25° B. 30° C. 35° D. 50°
【答案】A
10.如圖,AB是⊙O的直徑,AB=4,D、C在⊙O上,AD∥OC,∠DAB=60°,連接AC,則AC=( )
A. 4 B. C. D.
【答案】C
11.如圖,在□ABCD中,BD=4,將□ABCD繞其對(duì)稱(chēng)中心O旋轉(zhuǎn)90°,則點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為( )
A. 4π B. 3π C. 2π D. π
【答案】D
12.如圖CD是⊙O的直徑,CD=10,點(diǎn)A在⊙O上,∠ACD=30°,B為的中點(diǎn),P是直徑CD上一動(dòng)點(diǎn),則PA+PB的最小值為( )
A. 5 B. C. 5 D.
【答案】A
二、填空題
13.已知⊙O的半徑為3cm,圓心O到直線(xiàn)l的距離是2m,則直線(xiàn)l與⊙O的位置關(guān)系是________.
【答案】相交
14.如果扇形的圓心角為120°,半徑為3cm,那么扇形的面積是________ .
【答案】3π
15.一個(gè)底面直徑是80 cm,母線(xiàn)長(zhǎng)為90 cm的圓錐的側(cè)面展開(kāi)圖的圓心角的度數(shù)為_(kāi)_______
【答案】160
16.如圖,已知⊙P的半徑為2,圓心P在拋物線(xiàn)y=x2﹣1上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為_(kāi)_______ .
【答案】(,2)或(﹣,2)
17. 小楊用一個(gè)半徑為36cm、面積為324πcm2的扇形紙板制作一個(gè)圓錐形的玩具帽(接縫的重合部分忽略不計(jì)),則帽子的底面半徑為_(kāi)_______ cm.
【答案】9
18.如圖,AB是⊙O的直徑,C,D是⊙O上兩點(diǎn),∠BAC=40°,則∠D的度數(shù)為_(kāi)_______度.
?
【答案】130
19.(2017?宜賓)如圖,⊙O的內(nèi)接正五邊形ABCDE的對(duì)角線(xiàn)AD與BE相交于點(diǎn)G,AE=2,則EG的長(zhǎng)是________.
【答案】﹣1
三、解答題
20.如圖,圓O與四邊形ABCD四邊都相切,試討論四邊形ABCD邊與邊之間有何關(guān)系.
【答案】解:∵圓O與四邊形ABCD四邊都相切,
∴AG=AH,DF=CF,BE=BH,CE=CF,
∴AG+DG+CE+BE=AH+DF+CF+BH,
∴AD+BC=AB+CD,
即四邊形ABCD的對(duì)邊的和相等.
21.如圖,BC是⊙O的直徑,A是⊙O上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線(xiàn),交BA的延長(zhǎng)線(xiàn)于點(diǎn)D,取CD的中點(diǎn)E,AE的延長(zhǎng)線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)P。
(1)求證:AP是⊙O的切線(xiàn);
(2)若OC=CP,AB=3, 求CD的長(zhǎng)。
【答案】(1)證明:如圖,連結(jié)AO,AC.
∵BC是⊙O的直徑,
∴∠BAC=∠CAD=90°.
∵E是CD的中點(diǎn),
.
∴∠ECA=∠EAC.
,
∴∠OAC=∠OCA.
∵CD是⊙O的切線(xiàn),
∴CD⊥OC.
∴∠ECA+∠OCA=90°.
∴∠EAC+∠OAC=90°.
即∠OAP=90°
∴OA⊥AP.
∵A是⊙O上一點(diǎn),
∴AP是⊙O的切線(xiàn).
(2)解:由(1)知OA⊥AP.
在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,
.
∴∠P=30°.
∴∠AOP=60°.
∵OC=OA,
∴∠ACO=60°.
在Rt△BAC中,∵∠BAC=90°,AB=, ∠ACO=60°,
.
又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°-∠ACO=30°,
.
22.如圖,點(diǎn)D是線(xiàn)段BC的中點(diǎn),分別以點(diǎn)B,C為圓心,BC長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)A,連接AB,AC,AD,點(diǎn)E為AD上一點(diǎn),連接BE,CE.
(1)求證:BE=CE;
(2)以點(diǎn)E為圓心,ED長(zhǎng)為半徑畫(huà)弧,分別交BE,CE于點(diǎn)F,G.若BC=4,EB平分∠ABC,求圖中陰影部分(扇形)的面積.
【答案】(1)證明:∵點(diǎn)D是線(xiàn)段BC的中點(diǎn),
∴BD=CD,
∵AB=AC=BC,
∴△ABC為等邊三角形,
∴AD為BC的垂直平分線(xiàn),
∴BE=CE;
(2)解:∵EB=EC,
∴∠EBC=∠ECB=30°,
∴∠BEC=120°,
在Rt△BDE中,BD=BC=2,∠EBD=30°,
∴ED=BD=,∠FEG=120°,
∴陰影部分(扇形)的面積==π.
23.如圖,點(diǎn)C在以AB為直徑的半圓O上,以點(diǎn)A為旋轉(zhuǎn)中心,以∠β(0°<β<90°)為旋轉(zhuǎn)角度將B旋轉(zhuǎn)到點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)C作圓O的切線(xiàn)交DE于點(diǎn)G。
(1)求證:∠GCA=∠OCB;
(2)設(shè)∠ABC=m°,求∠DFC的值;
(3)當(dāng)G為DF的中點(diǎn)時(shí),請(qǐng)?zhí)骄俊夕屡c∠ABC的關(guān)系,并說(shuō)明理由。
【答案】(1)證明:如圖:
∵AB為⊙O的直角,
∴∠ACB=90°,即∠1+∠3=90°,
∵GC為⊙O的切線(xiàn),
∴OC⊥CG,
∴∠OCG=90°,即∠3+∠GCA=90°,
∴∠1=∠GCA,
即∠GCA=∠OCB;
(2)∵∠ACB=90°,
∴∠ABC+∠BAC=90°,
∵DE⊥AB,
∴∠AEF=90°,
∴∠AFE+∠EAF=90°,
∴∠AFE=∠ABC=m°,
∴∠DFC=∠AFE=m°;
(3)∠β=180°-2∠ABC.理由如下:
∵∠GCA=∠1,∠DFC=∠ABC,
而∠1=∠ABC,
∴∠GCF=∠GFC,
∴GF=GC,
∵G為DF的中點(diǎn),
∴GD=GF,
∴GD=GC,
∴∠2=∠4,
∴∠2+∠GCF= ×180°=90°,即∠DCF=90°,
而∠ACB=90°,
∴點(diǎn)B、C、D共線(xiàn),
∵以點(diǎn)A為旋轉(zhuǎn)中心,以∠β(0°<β<90°)為旋轉(zhuǎn)角度將B旋轉(zhuǎn)到點(diǎn)D,
∴AD=AB,∠BAD=β,
∴∠ABD=∠ADB,
∴β+2∠ABC=180°,
即β=180°-2∠ABC.
24.如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過(guò)原點(diǎn)O,且與x軸、y軸分別相交于A(﹣8,0),B(0,﹣6)兩點(diǎn).
(1)求出直線(xiàn)AB的函數(shù)解析式;
(2)若有一拋物線(xiàn)的對(duì)稱(chēng)軸平行于y軸且經(jīng)過(guò)點(diǎn)M,頂點(diǎn)C在圓M上,開(kāi)口向下,且經(jīng)過(guò)點(diǎn)B,求此拋物線(xiàn)的函數(shù)解析式;
(3)設(shè)(2)中的拋物線(xiàn)交x軸于D、E兩點(diǎn),在拋物線(xiàn)上是否存在點(diǎn)P,使得S△PDE= S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)解:設(shè)直線(xiàn)AB的函數(shù)解析式為y=kx+b,
把A(﹣8,0),B(0,﹣6)代入得 ,解得 ,
所以直線(xiàn)AB的解析式為y=﹣ x﹣6
(2)解:在Rt△AOB中,AB= =10,
∵∠AOB=90°,
∴AB為⊙M的直徑,
∴點(diǎn)M為AB的中點(diǎn),M(﹣4,﹣3),
∵M(jìn)C∥y軸,MC=5,
∴C(﹣4,2),
設(shè)拋物線(xiàn)的解析式為y=a(x+4)2+2,
把B(0,﹣6)代入得16a+2=﹣6,解得a=﹣ ,
∴拋物線(xiàn)的解析式為y=﹣ (x+4)2+2,即y=﹣ x2﹣4x﹣6
(3)解:存在.
當(dāng)y=0時(shí),﹣ (x+4)2+2=0,解得x1=﹣2,x2=﹣4,
∴D(﹣6,0),E(﹣2,0),
S△ABC=S△ACM+S△BCM= ?8?CM=20,
設(shè)P(t,﹣ t2﹣4t﹣6),
∵S△PDE= S△ABC ,
∴ ?(﹣2+6)?|﹣ t2﹣4t﹣6|= ?20,
即|﹣ t2﹣4t﹣6|=1,
當(dāng)﹣ t2﹣4t﹣6=1,解得t1=﹣4+ ,t2=﹣4﹣ ,此時(shí)P點(diǎn)坐標(biāo)為(﹣4+ ,1)或(﹣4﹣ ,0)
當(dāng)﹣ t2﹣4t﹣6=﹣1,解得t1=﹣4+,t2=﹣4﹣ ;此時(shí)P點(diǎn)坐標(biāo)為(﹣4+ ,﹣1)或(﹣4﹣ ,0)
綜上所述,P點(diǎn)坐標(biāo)為(﹣4+ ,1)或(﹣4﹣ ,0)或(﹣4+ ,﹣1)或(﹣4﹣ ,0)時(shí),使得S△PDE= S△ABC .
11