超聲磨削裝置結(jié)構(gòu)設(shè)計【全套含有CAD圖紙三維建?!?/h1>
超聲磨削裝置結(jié)構(gòu)設(shè)計【全套含有CAD圖紙三維建?!?全套含有CAD圖紙三維建模,超聲,磨削,裝置,結(jié)構(gòu)設(shè)計,全套,含有,CAD,圖紙,三維,建模
畢業(yè)設(shè)計(論文)
開 題 報 告
學(xué)生姓名
學(xué) 號
專 業(yè)
班 級
指導(dǎo)教師
2017 年 3 月 17 日
課題題目及來源:
題目:超聲磨削裝置結(jié)構(gòu)設(shè)計
題目來源:自擬
課題研究的意義和國內(nèi)外研究現(xiàn)狀:
1.1研究目的
隨著科學(xué)技術(shù)的發(fā)展及航空航天等領(lǐng)域的需求,不銹鋼、復(fù)合材料、工程陶瓷等難加工材料應(yīng)用日趨廣泛,而此類材料的特殊性能使其加工制造非常困難。例如,海洋結(jié)構(gòu)件普遍采用耐腐蝕的不銹鋼,而不銹鋼加工起來切削力大、切削溫度高、粘刀現(xiàn)象嚴(yán)重、加工硬化趨勢強等特點,使得不銹鋼切削過程中切削功率消耗大,切削溫度高,而且加工工件表面質(zhì)量較低。又如航空發(fā)動機重要零件如機匣、壓氣機風(fēng)扇葉片等廣泛采用鈦、鎳基合金等先進結(jié)構(gòu)材料,而鈦、鎳基合金材料切削加工性較差,主要表現(xiàn)在材料熱硬度和熱強度很高,所需切削力很大,工件、刀具容易產(chǎn)生較大變形。航天飛機機頂首部廣泛采用工程陶瓷,但工程陶瓷具有高強度、高硬度、高脆性等特點,使得陶瓷材料的加工十分困難,加工成本很高。此類材料的出現(xiàn)及廣泛應(yīng)用,對機械制造業(yè)提出了一系列迫切需要解決的新問題。對此,采用傳統(tǒng)加工方法十分困難,甚至無法加工,而特種加工很適合對這些材料進行經(jīng)濟加工。而在眾多特種加工方法中,超聲加工有其獨特的優(yōu)點,因而迅速得以發(fā)展和推廣。
1.2研究意義
超聲波是指頻率高于人耳聽覺上限的聲波。一般來講人耳可以聽到的聲波的頻率范圍約為1620KHz。因此人們常把高于20KHz的聲波稱為超聲波。而在實際應(yīng)用種有些超聲技術(shù)使用的頻率可能在16KHz以下。早在1830年為了探討人耳究竟能夠聽到多高的頻率F.Savart曾用一個多齒的輪首次產(chǎn)生了頻率為42.410Hz的超聲但人們一般卻認(rèn)為首次有效產(chǎn)生高頻聲的應(yīng)是1876年F.Galton
的氣哨實驗。第一次世界大戰(zhàn)期間P.Langevin發(fā)明了石英晶體換能器用來在水中發(fā)射和接收頻率較低的超聲波開始了人類真正科學(xué)的開展超聲技術(shù)的研究。超聲具有許多獨特的性質(zhì)和優(yōu)點如頻率高、波長短、在一定距離內(nèi)沿直線傳播具有良好的束射性和方向性、并在液體介質(zhì)中傳播時可在界面上產(chǎn)生強烈的沖擊和空化現(xiàn)象。因此近年來隨著科學(xué)技術(shù)的發(fā)展超聲技術(shù)發(fā)展極為迅速應(yīng)用領(lǐng)域非常廣泛。目前其應(yīng)用遍及航空、航海、 國防、生物工程以及電子等領(lǐng)域在我國國民經(jīng)濟建設(shè)中發(fā)揮越來越大的作用。由于各種客觀條件的限制,迄今為止對于超聲加工,特別是旋轉(zhuǎn)超聲加工的加工機理、工藝規(guī)律和加工穩(wěn)定性等的研究還處于早期的探索階段,而對旋轉(zhuǎn)超聲磨削加工的研究更是鳳毛麟角。而有研究表明,在超聲加工中,旋轉(zhuǎn)超聲磨削具有加工時磨削力小、加工效率高、精度高、工具磨損小以及對加工材料適應(yīng)廣等優(yōu)點,也是復(fù)合材料、不銹鋼等難加工材料比較理想的加工方法。因此得到高度的重視,發(fā)展?jié)摿κ窍喈?dāng)巨大的。
1.3國內(nèi)外研究現(xiàn)狀
日本研究成功一種半波長彎曲振動系統(tǒng),其切削刀具安裝在半波長換能振動系統(tǒng)細(xì)端,該振動系統(tǒng)換能器的壓電陶瓷片采用半圓形,上下各兩片,組成上下兩個半圓形壓電換能器(壓電振子),其特點是小型化,結(jié)構(gòu)簡單,剛性增強。 日本還研制成一種新型“縱-彎”型振動系統(tǒng),并已在手持式超聲復(fù)合振動研磨機上成功應(yīng)用。該系統(tǒng)壓電換能器也采用半圓形壓電陶瓷片產(chǎn)生“縱-彎”型復(fù)合振動。 1994 年日本多賀電氣株式會社采用“縱一彎”型超聲復(fù)合振動系統(tǒng)制成研磨機,用于放電加工后的模具溝槽側(cè)壁研磨拋光。研磨工具做縱向振動和彎曲振動。研究結(jié)果表明,彎曲振動方向不同,可獲得不同的研磨效果。哈爾濱工業(yè)
大學(xué)的吳永孝、張廣玉等人研制的超聲波振動小孔內(nèi)圓磨削系統(tǒng),在小孔磨削提高磨削效率和加工精度等方面取得了一定的成效,所用磁致伸縮換能器發(fā)熱大,采用了加裝制冷裝置的方法解決冷卻問題,但致使其結(jié)構(gòu)復(fù)雜。1996 年前后華北工學(xué)院辛志杰、劉剛通過對超聲振動內(nèi)圓磨削機理的探討,研制了一套超聲內(nèi)圓磨削裝置,在改善工件表面質(zhì)量、提高生產(chǎn)率和內(nèi)圓磨削系統(tǒng)結(jié)構(gòu)設(shè)計上有了新的突破。1997 年英國研制了硬脆材料納米磨削中心,可實現(xiàn)硬脆材料超聲納米表面加工;日本UNNO 海野邦昭分別進行了工程陶瓷超聲磨削的研究。多項研究結(jié)果表明:超聲磨削陶瓷材料的加工效率可提高近一倍;當(dāng)工具與工件上同
時施加超聲振動時,加工效率可提高2—3 倍。1997 年前后西北工業(yè)大學(xué)史興寬等人研制了一種超聲內(nèi)圓磨削裝置,此裝置較專用超聲磨床主軸系統(tǒng)結(jié)構(gòu)簡單,但因發(fā)熱大而使用了冷卻裝置,這就使此超聲磨頭的結(jié)構(gòu)顯得復(fù)雜,雖然加工效率和加工質(zhì)量有一定的提高,但其復(fù)雜的結(jié)構(gòu)不利于推廣使用。 2002 年弗勞恩霍夫生產(chǎn)技術(shù)研究院研制出了新型超聲研磨設(shè)備DMS 50,采用該設(shè)備對超聲輔助磨削過程進行了技術(shù)性分析。并且,國外已研究出先進的超聲振動主軸,其轉(zhuǎn)速可達 4000r/min 至30,000r/min??梢詫崿F(xiàn)加工過程中砂輪的振動,并使其轉(zhuǎn)速達到傳統(tǒng)磨削工藝的水平。 德國 Fraunhofer 研究中心和布萊梅大學(xué)精密工程中心采用非圓周對稱結(jié)構(gòu)在單縱振激勵的條件下產(chǎn)生了 10:1 的橢圓振動,提高了刀具壽命,也保證了加工精度。另外新加坡制造技術(shù)研究所仿照德國研究人員的結(jié)構(gòu)也制作除了超聲橢圓振動切削不銹鋼的裝置。 天津大學(xué)于思遠(yuǎn)、劉殿通等人對各種先進陶瓷小孔加工進行了系統(tǒng)研究,采用無冷壓電陶瓷換能器研制了一臺陶瓷小孔超聲波磨削加工機床,在工程陶瓷小孔磨削時對磨頭施以超聲振動,提出了高效的超聲磨削復(fù)合加工方法,效率比傳統(tǒng)的超聲加工提高6 倍以上,表面質(zhì)量也有大幅度提高 。南京航空航天大學(xué)楊衛(wèi)平、徐家文設(shè)計了用于加工三維型面的超聲磨削裝置,推導(dǎo)了用于數(shù)控加工的超聲磨削裝置變幅桿設(shè)計的數(shù)學(xué)模型,此裝置采用電機直連進行旋轉(zhuǎn),電信號傳輸采用碳刷集流環(huán)的傳輸方式。河南工業(yè)大學(xué)機電工程學(xué)院李華、殷振等人設(shè)計了超聲波橢圓振動內(nèi)圓磨削磨頭,并在超聲振動內(nèi)圓磨削系統(tǒng)中采用了新型的回轉(zhuǎn)式非接觸超聲波電能傳輸方式,解決了碳刷、集流環(huán)電能傳輸方式中存在的問題 [25] 。 德國 DMG 公司和日本馬扎克公司將超聲振動頭安裝在加工中心上,進行了零件異形溝槽加工、內(nèi)外圓磨削、平面磨削加工、以及導(dǎo)電陶瓷材料的超聲振動磨削研究,取得良好效果,并已實現(xiàn)商業(yè)化生產(chǎn)應(yīng)用。在第八屆中國國際機床展覽會(CIMT2003)上,德國DMG 公司展出了其新產(chǎn)品 DMS35Ultrasonic 超聲振動加工機床,該機床主軸轉(zhuǎn)速3 000~4 0000 r/min,特別適合加工陶瓷、玻璃、硅等硬脆材料。與傳統(tǒng)加工方式相比,生產(chǎn)效率提高5 倍,加工表面粗糙度 Ra<0.2μ m,可加工0.3mm 精密小孔,堪稱硬脆材料加
(DMS35Ultrasonic)
課題研究的主要內(nèi)容和方法,研究過程中的主要問題和解決辦法:
2.1基本內(nèi)容
研究對象:超聲磨削裝置結(jié)構(gòu)設(shè)計;
研究的問題:
1、闡述課題背景,對國內(nèi)外相關(guān)研究現(xiàn)狀進行總結(jié)和分析;
2、根據(jù)主要技術(shù)指標(biāo),在分析國內(nèi)外研究現(xiàn)狀基礎(chǔ)上制定總體設(shè)計方案,并闡明方案制定依據(jù);
3、對超聲磨削裝置進行機械結(jié)構(gòu)設(shè)計;完成超聲磨削裝置運動設(shè)計、零部件的具體結(jié)構(gòu)設(shè)計;
4、對所設(shè)計的結(jié)構(gòu)進行精度和剛度校核;
5、得出設(shè)計結(jié)論。
2.3所要解決問題
? 1、超聲加工設(shè)備及其組成部分結(jié)構(gòu)設(shè)計:超聲磨削裝置要與數(shù)控立式床身銑床聯(lián)接,裝置要座于銑床的銑頭。因為加工需要,所以本裝置一直處在高速運轉(zhuǎn)的狀態(tài)。因此變幅桿與主軸的連接處,需要更穩(wěn)定,防止裝置在加工過程中產(chǎn)生震動的現(xiàn)象。初步設(shè)計采用四種方案,方案一 三 四采用電機加聯(lián)軸器方案二采用電機加皮帶輪,方案一 三 四比方案二的整體尺寸相對結(jié)構(gòu)要小得多,這對減輕裝置的重量大有意義,結(jié)構(gòu)方案一、三與結(jié)構(gòu)方案四相比,前兩者的裝配較方便,但是,電機與軸的同軸度很難保證,在高速旋轉(zhuǎn)下同軸度如果沒發(fā)保證的話,軸承會很快磨損,裝置的工作狀態(tài)就會呈現(xiàn)出惡性循環(huán),軸就會擺動。如此一來裝置的加工精度就沒法保證了,本裝置的精密加工就失去了意義。再者如果同軸度不好,軸的速度也不會達到較高速度。這也沒法實現(xiàn)高速磨削的目的。
結(jié)構(gòu)方案四中聯(lián)軸器處于電機座的內(nèi)部,軸座和電機座之間的同軸度靠兩者之間的定位銷來保證,這樣就可以避免上述問題的出現(xiàn)。結(jié)構(gòu)方案二為電機加皮帶輪,
整體上顯得系統(tǒng)所占空間較大。軸受到較大的彎矩作用,因此在設(shè)計中要注意軸徑是否有足夠的彎矩強度,同時還要注意是否有足夠的剛性。如果剛性不足的話,那么軸就會被拉彎,軸的另一端就會出現(xiàn)擺角,裝置的加工精度也就沒法保證了。
結(jié)構(gòu)方案四中的電機座是整個裝置的支撐,電機僅僅是靠其端部四個螺釘來固定
的,因此看來電機座后面的大部分對電機不起支撐作用,多余的材料就增加了系統(tǒng)的重量。而且裝置整體看來顯得前小后大,前面薄弱剛性不足,后面材料過多,笨重有余。從審美的觀點來看也顯得不夠美觀。總的來說上的幾種結(jié)構(gòu)方案各有各的優(yōu)缺點,最終結(jié)構(gòu)方案是綜合上面幾種結(jié)構(gòu)方案中的可取之處,同時彌補其不足之點而成的。
2、變幅桿的設(shè)計:需要盡力提高放大系數(shù),從而提高超聲加工的效率,并綜合考慮變幅桿的設(shè)計、制造采用由圓柱形和圓錐形變幅桿組合而成的復(fù)合型變幅桿且此變幅桿兩段采用不同截面、不同材料,因此材料選擇變的很重要,初步選定材料有鋁合金、鈦合金和45號鋼等。
3、壓電陶瓷的選擇:考慮到磁致伸縮換能器的主要缺陷在于高電能損失(例如渦流損失)和低能量利用率(-50%),這些損失表現(xiàn)為熱,因此換能器必須水冷或空冷而且體積很大。與壓電式的相比,它也不能產(chǎn)生高的振動強度。而壓電換能器能量效率很高(可達90~96%),不需要任何冷卻。不易于熱損傷,更容易構(gòu)建,也更適于旋轉(zhuǎn)超聲加工。
4、軸強度的較核與鍵的校核:根據(jù)具體的受力載荷情況分別進行大量計算對于主要承受扭矩的軸(傳動軸),應(yīng)按扭轉(zhuǎn)強度計算;對于只承受彎矩的軸(心軸),應(yīng)安彎矩強度計算;對于既承受彎矩又承受扭矩的軸(轉(zhuǎn)軸),應(yīng)按彎扭合成強度計算,需要時還應(yīng)按疲勞強度條件進行計算。通常只按工作面上的擠壓應(yīng)力進行強度較核計算。對于導(dǎo)向平鍵聯(lián)接,其主要失效形式是工作面的過度磨損。因此,通常按工作面上的壓力進行條件性的強度較核計算。
5、電機的計算與選擇:磨削過程中,由于磨粒的作用以及砂輪表面上有效的狀況異常復(fù)雜,因而要想建立一個十分切合實際的陶瓷磨削力數(shù)學(xué)模型非常困難。所以需要經(jīng)過大量計算來確定電機的功率,分別計算了電環(huán)處線速度,材料磨削力大小,最大扭矩,聯(lián)軸器和軸承的機械效率,總的機械效率,電機需提供的功率。最終確定所選電機。
課題研究所需的參考文獻:
[1] 濮良貴等主編.機械設(shè)計.高等教育出版社,2001
[2] 孫桓等主編.機械原理.高等教育出版社,2001
[3] 陳日曜主編.金屬切削原理. 機械工業(yè)出版社,2000
[4] 王先逵主編.機械制造工藝學(xué).機械工業(yè)出版社,2001
[5]機械設(shè)計(原書.第16版)(德)穆斯 等編著,孔建益 譯?/2012-03-01?/機械工業(yè)出版社
[6]機械設(shè)計王軍,田同?!≈骶?/2015-07-01?/機械工業(yè)出版社
[7]先進制造技術(shù),盛曉敏,鄧朝暉 主編 機械工業(yè)出版社
[8]超聲加工技術(shù),曹鳳國,機械工業(yè)出版社
[9]難加工材料的磨削, 任敬心主編,國防工業(yè)出版社, 1999
[10] 顧煜炯等,超聲振動系統(tǒng)設(shè)計及性能分析的解析方法,華北電力大學(xué)學(xué)報, 1998
[11] Shigley’s Mechanical Engineering Design,
[12]Mechanical Engineering Handbook,by Frank Kreith
[13]Automotive Engineering Fundmentals,by Richard Stone,Jeffrey K.Ball
指導(dǎo)教師審查意見:
指導(dǎo)教師簽字:
20 年 月 日
指導(dǎo)委員會意見審核意見:
組長簽字:
20 年 月 日
附錄A
Dynamic Simulation of an Injection Molding
Author1, Author2, Author3.
Applied Thermal Engineering, 2016, 8(6):556-568.
Abstract: An integrated design method is discussed which thoroughly considers related parameters of the various subsystems in order to optimize the overall system that mainly consists of opto--mechanical structure CAD, CAE and the integrated information platform PDM. Based on the parameter drive of the virtual main model, the method focuses on the model transformation and data share among different design and analysis steps, and so the concurrent simulation and design optimization are carried out. As an example of application, the integrated design for a large-scale opto-mechanical structure is introduced, including optical design, structure design and analysis, which further validates the advantages of the method. Due to comprehensive consideration of the design and analysis process by CAD and CAE based on PDM, the integrated design well attains the structure optimization with high efficiency.
Keywords: integrated design; CAD/CAE; large-scale structure; optical instrument.
1. Introduction
The analysis of products integrating different technologies, e.g. mechanical, hydraulic and controls systems, becomes more and more feasible with the constant development of simulation software and more performing computer hardware. The combination of specialized software packages is possible and allows the simulation of so-called mechatronic systems. If in the past such tools were mainly used in the aeronautic and automobile industries, they now find their way into more common engineering applications. In this case,the dynamic characteristics of the clamp unit of an injection molding machine from HUSKY is investigated. For this purpose, the finite-element (FE) program ANSYS, the multi-body simulation (MBS) software ADAMS, the fluid power simulation software DSHplus and the controls design tool MATLAB/Simulink are used. Combining these different simulation tools and applying them to the damp unit, we can analyze and understand the dynamic behavior of the machine and the interaction between the different sub-systems. This is necessary to improve the performances, like reducing wear, cycle time or noise, or avoiding premature failure of parts.
The damp unit Is the mechanism that doses and opens the mold and keeps it effectively closed during the injection and the holding-pressure stages. The HUSKY OUADLOC' damp is a two-platen hydraulic damping system. The main components are the moving platen, the clamp base and the stationary platen with the four tie bars. The platen locking and the damping force are realized with the damp pistons, which are integrated in the moving platen. The damp pistons can be rotated by 45' to engage the tie bar teeth in order to lock the moving platen in its position. The main functions of the damp unit are actuated hydraulically;hydraulic pressure is applied to the damp pistons to generate the necessary damping force and two hydraulic cylinders are used for the displacement of the moving platen. [1]
Figure1: HUSKY QUADLOC clamp unit
The analysis focuses on two aspects: first, the quantification of the forces acting on the pads between the damp base and the foundation in order to foresee and prevent any creep of the machine during operation, and second, the optimization of the stroke command signal in order to reduce the overall cycle time. Therefore the simulation model Is limited to the moving platen stroke.
2. Simulation Models
The mechanical, hydraulic and controls systems are modeled in ADAMS, DSHplus and MATLAB/Simulink, respectively. ADAMS gives the possibility to Include non-standard phenomena by linking user-written FORTRAN or C subroutines In the model. DSHplus uses this feature to make a co-simulation between both programs possible. Besides, ADAMS disposes of a plug-In that allows the user to conned the MBS model with Simulink. Thus it is possible to link the three simulation tools and simulate the complete machine. There are two
possibilities for the computation: first, each program Integrates its own set of differential equations and exchanges the necessary parameters with the other ones, second, the three models are completely integrated and only the Slmulink solver Integrates the differential equations set.
Figure2:co-simulation of moving platen stroke
Additionally, the flexibility of mechanical parts can be included in ADAMS. We use ANSYS to generate the necessary FE models and to reduce these large models to a few degrees of freedom before being integrated Into ADAMS. The reduction method Is based on the component mode synthesis technique Introduced by Craig and Bampton.
Mechanical Model
The rgid-body model of the damp unit Is very simple and consists only of two parts: the moving platen and the stationary platen with damp base and tie bars (refer to figure 4). The damp base is fixed with linear spring-damper elements to the ground and the sliding of the moving platen is modeled with contact statements. Basically, the contact statement is a nonlinear spring-damper element where the force is proportional to the penetration depth x and the penetration velocity it :x
k and d are the contact stiffness and damping coefficients, respectively and a is an exponent that for numerical reasons should be chosen greater then 1. If there is no penetration, then no force is applied, otherwise the location of contact, the normals at the points of contact and the force acting between both parts are computed. The statement also includes a Coulomb friction model. The transition from the static to the dynamic friction coefficient Is based on the relative velocity of the two colliding geometries. Finally, the two stroke cylinder forces and a contact statement are defined between both platens. In order to have a more accurate mechanical model, also In view of a more realistic distribution of the forces on the damp-base pads, the different parts are included as flexible bodies. These flexible bodies are derived from FE models that are reduced before being imported. The reduction method Implemented In ADAMS is based on the component mode synthesis (CMS) technique, i.e. the deformation is written as a linear combination of mode shapes. In ADAMS, constraint modes and fixed-boundary normal modes are used to generate the component-made matrix 0. This approach is known as the Craig-Bampton method. In the following, the basic principles and steps of Integrating flexible bodies In ADAMS are shown; a more detailed theoretical presentation can be found in
First of all, a FE model Is created that is detailed enough to comedy represent the mode shapes of interest. The user has then to choose the nodes that serve as interface to the MBS model. The kinematic constraints or forces are applied to these boundary nodes; the remaining nodes are referred to as interior nodes.
By fixing the degrees of freedom (DOF) u, of the boundary nodes and solving an elgenproblem, we get the fixed-bounder, normal modes d>r. This normal mode set is usually truncated. The constraint modes dc are defined as the static deformation of the structure when a unit displacement Is applied to one DOF of a boundary node while the remaining DOF of the boundary nodes are restrained (Guyan reduction). Finally the component mode reduction matrix m Is defined by the normal modes set φand the constraint modes set d>r.
The relationship between the physical displacement coordinates u and the component generalized coordinates q is
With equation (2) the generally large number of physical DOF u is drastically reduced to few mixed physical and modal DOF q.
However, the Craig-Bampton modal basis q has certain disadvantages that make it sometimes difficult to directly use it in a multi-body simulation. The set of constraint modes contains the 6 rigid-body DOF that must be replaced by the large displacement DOF of the local body reference frame in ADAMS. They have to be removed and therefore the component-mode matrix Is transformed by solving the eigenproblem
where K and M are the reduced stiffness and mass matrix, respectively. The manipulation results In a modal basis where q - N4; N containing the elgenvectors from equation (3).
The last step Is a purely mathematical approach and does not further reduce the number of DOF. The new modal basis q has no direct physical meaning anymore but addresses the problems mentioned above
Table 1: First 13 eigenfequencies of the moving platen
The motion of a flexible body is derived from the same equation as for a rigid-body, I.e. Lagrange's equations. In order to calculate the kinetic and potential energy, the position and velocity of an arbitrary point on the flexible body Is expressed with the generalized coordinates.
M the generalized mass matrix depending on,
K the generalized stiffness matrix only depending on q
V the gravitational energy,
D the damping matrix defined using modal damping ratios Is
Q the kinematic constraint equations applied to the flexible body.
Adding flexible bodies to an ADAMS model is quite straightforward. Nevertheless, there are some limitations regarding forces and joints that can be defined to them. Especially the problem of a moving force on a flexible body.
I.e. moving platen sliding on clamp base, is an open Issue in multi-body dynamics. However, there are "standard" workarounds which work well and which have proven their usefulness.
The technique Implemented in our flexible-body model is based on the contact statement mentioned above. Basically it works as follows: for each of the selected nodes along the sliding path, a force is computed according to equation
That depends on the relative vertical position y and velocity y of the node to the moving platen.
However, the force is only activated when the node and the moving platen effectively overlap. In fad, It is weighted by a function that depends on the horizontal distance x between the node and the moving platen.
The force is ramped up from zero or ramped down to zero In order to guarantee a smooth application and to minimize any discontinuities.
No contact points and contact normals are computed. The distance and velocity of a node relative to the moving platen are taken In the global coordinate system and the contact and friction forces are always collinear with the coordinate system unit vectors.
Nevertheless, this approach gives acceptable results, as the deformation of the damp base is very small. A Coulomb friction force is applied in the same way.
Figure 3: moving platen sliding model
The main disadvantage is that a huge number of Interface nodes are needed to have any sound representation of the moving contact forces. Unfortunately, this gives a huge number of flexible-body DOF and therefore unacceptable computation times. Now, instead of defining these nodes as interface nodes, they remain interior nodes. From a purely theoretical point of view, the accuracy of the results is not guaranteed anymore when using interior nodes as interface nodes. However, choosing more normal modes can reduce the error. The comparison of a model using interior nodes for the moving platen sliding with one using interface nodes shows a very 9000 Compliance Of the results While having a much taster computation time. Therefore we used this model for the following simulations. Other methods were not tested but some of them are presented in (3) and (4).
The flexible bodies are created in ANSYS. Simplified CAD geometries of both platens were imported In the FE program and meshed automatically with tetrahedral SOLID187 elements. The damp base was generated 'manually" with SHELL63 elements and the tie bars are modeled with BEAM4 elements. Stationary platen, clamp base and tie bars were put together b one assembly and the different components connected via spring-damper elements (COMBIN14). A macro for the computation of the modified Craig-Brampton basis is available In ANSYS. It allows the user to specify the Interface nodes and the number of normal modes. The resulting modal basis Is written to a file that has to be imported Into ADAMS.
The ANSYS macro automatically selects the six DOF of each interface node as u}. However, it is not imperative to select all the six DOF. This allows us to furthermore reduce the number of static modes and thus the number of flexible-body DOF. The macro has been changed accordingly to select only the effectively required DOF ua Finally, the moving platen has 29 flexible-body DOF and the stationary platen, clamp base and tie bars assembly has 95 flexible-body DOF.
Figure4:ADAMS flexible-body model
附錄B
注塑機的動態(tài)模擬
Author1, Author2, Author3.
Applied Thermal Engineering, 2016, 8(6):556-568
摘要:討論了充分考慮相關(guān)的參數(shù)是一個集成的設(shè)計方法為各子系統(tǒng)優(yōu)化的整體系統(tǒng),主要由光電—機械結(jié)構(gòu)CAD,CAE與PDM集成信息平臺?;诘奶摂M模型的參數(shù)驅(qū)動的方法,側(cè)重于模式的轉(zhuǎn)型的設(shè)計和分析的步驟之間的數(shù)據(jù)共享,所以并行仿的設(shè)計進行優(yōu)化。作為應(yīng)用實例,綜合設(shè)計介紹了一種大型光學(xué)機械結(jié)構(gòu),包括光學(xué)設(shè)計,結(jié)構(gòu)設(shè)計與分析,進一步驗證了該方法的優(yōu)點。由于分析了基于PDM和CAD和CAE過程的設(shè)計,集成設(shè)計達到結(jié)構(gòu)優(yōu)化效率高。
關(guān)鍵詞:集成設(shè)計:CAD / CAE:大規(guī)模的結(jié)構(gòu):光學(xué)儀器
1. 介紹
產(chǎn)品整體不同技術(shù)的分析,例如,機械、液壓、控制系統(tǒng),模擬軟件可持續(xù)發(fā)展和更多計算機硬件操作變得越來越可行。結(jié)合特殊的軟件程序包是可以和允許對所謂的機電一體化系統(tǒng)模擬的。如果在過去這些工具被應(yīng)用與航空和汽車工業(yè)中,那么他們現(xiàn)在會找到更多應(yīng)用工程技術(shù)的相同點。因此,被研究的是HUSKY注塑機夾緊裝置的動態(tài)特性。ANSYS有限元(FE)程序,ADAMS多維模擬軟件,DSHplus流體動力模擬軟件和MATLAB仿真設(shè)計控制工具都被用于這個目。結(jié)合這些不同的模擬工具并應(yīng)用它們于合模機構(gòu),我們就能分析和理解機器的動態(tài)行為和不同子系統(tǒng)之間的聯(lián)系。這就需要去提高性能,像減少磨損、循環(huán)時間或噪音,或者避免部件早期的錯誤。
合模機構(gòu)是一個開啟與合上模具并能夠在注塑和保壓階段有效的緊閉的機構(gòu)。HUSKY QUADLOCTM合模機構(gòu)是一個二板式液壓合模系統(tǒng)。主要由動模板,合模工作臺,定模板和四個拉桿構(gòu)成。模板鎖定和合模壓力是通過動模板整合的合模栓塞實現(xiàn)的。合模栓塞可以旋轉(zhuǎn)45度去嚙合拉桿螺紋為了保證動模板在注塑位置上。合模機構(gòu)的主要功能是驅(qū)動液壓油:液體壓力被施加在合模栓塞上去產(chǎn)生需要的合模壓力并且兩個油缸被用于動模板的移動[1]。
分析的焦點集中在兩個方面:第一,壓力作用在工作臺之間的襯墊上和為了預(yù)見的基礎(chǔ)并阻止機器在運轉(zhuǎn)中爬行。第二,為了減少總體循環(huán)時間的最優(yōu)化的噴射控制信號。因此,模擬模型被限制移動模版的注射。
2. 模擬模型
機械,液壓,控制系統(tǒng)被分別的在ADAMS, DSHplus和MATLAB仿真中模擬。ADAMS可能包括由鏈接FORTRAN書面使用和C程序在模型中引起的不標(biāo)準(zhǔn)的現(xiàn)象。DSHplus利用這個特點在兩個可能的程序上建立了一個co模擬。另外,ADAMS處理插件允許使用者用模擬鏈接MBS模型。因此,鏈接三個模擬工具和模擬整個機器是可能的。這里有兩個可能估計:第一。各個整合它自己不平衡的部分并和其他的部分交換參數(shù)。第二,三個模型被完全的整合并只有模擬求解整合不同的因素部分。
圖1 HUSKY QUADLOCTM合模機構(gòu)
此外,柔性的機械部件可以包括在ADAMS中。我們用ANSYS產(chǎn)生必要的FE模式,并在被納入ADAMS之前降低這些大型模型自由度。
減少自由度方法是基于引用Craig和bampton的組件式合成技術(shù)這是必要的。
圖2 模型的聯(lián)合仿真
2.力學(xué)模型
合模機構(gòu)的剛性模型很簡單,只分為兩個部分: 移動模板和固定模板和合模工作臺還有拉桿(參見圖4)。合模工作臺是固定在地面上裝有線性彈簧-阻尼單元和滑動的動模板構(gòu)成報表式的模型。基本上,報表式是一個穿透深度X和滲透速率X與壓力成正比的非線性彈簧-阻尼單元K和d分別的是接觸剛度和阻尼系數(shù), e是一個指數(shù),由于數(shù)值原因應(yīng)選擇大于1。如果沒有滲透,那么就沒有壓力作用,否則就會有接觸,正常應(yīng)在接觸點和作用力兩部分之間計算。該報表還包括了一個庫侖摩擦模型。從靜態(tài)到動態(tài)的摩擦系數(shù)的變化,是基于相對速度的兩個幾何碰撞。最終,在兩個模板之間定義了兩個液壓缸的壓力和接觸報表。為了有一個更準(zhǔn)確的力學(xué)模型,同時,鑒于更為實際的分配作用在合模工作臺上的力,他的不同部分被列為柔性機構(gòu)。這些柔性機構(gòu)是來自在被輸入之前減少了的FE模式。這種在ADAMS里減少方法的實施是基于組件式頻率合成器( CMS )中的技術(shù),即變形是被看作是線性組合模式形狀。在ADAMS里,約束模式和固定邊界的正常模式是用來生成組件矩陣模式Ф。這種方法被稱為Craig-Bampton方法。接下來,在ADAMS中基本的原則和柔性體積分的步驟被展示:更詳細(xì)的理論介紹可以在[2]式中看到。一個FE模型的建立可以足夠詳細(xì)的正確表達出模型的重要性。操作者這時可以選擇充當(dāng)MBS模型的邊界作為節(jié)點。被約束的運動和力被施加在這些邊界節(jié)點上;其余的節(jié)點稱為內(nèi)部節(jié)點。由固定在邊界節(jié)點上的自由度(DOF)和求解特征,我們得到固定邊界常態(tài)模量,這個正常的設(shè)定模式通常是截斷。約束模量被定義為當(dāng)其余邊界節(jié)點自由度都受約束時,一個元件施加在一個邊界節(jié)點的一個自由度的靜態(tài)結(jié)構(gòu)的變形。最后組成還原矩陣的模式被解釋為常態(tài)設(shè)定模式和約束設(shè)定模式。實際位移坐標(biāo)u和組成廣義坐標(biāo)q之間的關(guān)系是
在方程(2)中,普遍的大量的自由度u被徹底的減少到只有少數(shù)混合現(xiàn)實和虛擬的自由度q。然而,Craig-Bampton的基礎(chǔ)形態(tài)q也有一些毫無疑問的缺點,使有時在多維仿真中難以直接利用它。這套約束模式包含6個剛體自由度,必須取而代之在ADAMS中主體局部的大位移自由度。它們必須被移除,因此在求解方程中,結(jié)構(gòu)模型的矩陣被轉(zhuǎn)化。
其中k和m在矩陣中分別代表降低的剛度和質(zhì)量。在基礎(chǔ)模量上處理的結(jié)果是;N包含的特征在方程(3)中被表現(xiàn)。
最后一步,是一個純粹的數(shù)學(xué)方法,并沒有進一步減少自由度的數(shù)量。新的基礎(chǔ)模量就沒有了直接的物理意義了,而是針對上述的問題。
柔性體的運動模型是與剛性體來自同一方程,即拉格朗日方程。為了計算動能和勢能,柔性體上任意點的位置和速度是由廣義坐標(biāo)表示的。
x,y,z,Ψ,θ,Φ,為局部參照系附加彈性體和描述六個剛體模式的坐標(biāo)。最終形式的運動方程是
其中ξ 為廣義坐標(biāo),
M 依賴于ξ的廣義質(zhì)量矩陣,
K 只取決于的廣義剛度矩陣,
D 阻尼矩陣定義模態(tài)阻尼§,因此D是對角線,
Ψ 適用于柔性體運動學(xué)約束方程,
λ 拉格朗日乘數(shù),
Q 廣義應(yīng)用的力。
另外,一個柔性體在ADAMS模式下相當(dāng)?shù)闹苯亓水?dāng)。不過,也有一些力量和關(guān)節(jié)限制,我們可以界定給它們。特別是在一個柔性體上摩擦力的問題,即動模板在工作臺上滑動,是一個多維動力學(xué)的開放性問題。然而,它們制定的標(biāo)準(zhǔn)使得運行好并且被證明有用。
在我們的柔性模型中,技術(shù)的執(zhí)行是基于上述的表訴?;旧纤哪J饺缦?對于每一個沿滑動路徑選定的節(jié)點,一個力根據(jù)作用在動模板上垂直位置和速度的關(guān)系的方程(1)進行計算。然而,力只是在當(dāng)節(jié)點和動模板的重疊部分起作用時才作用。事實上,重量的函數(shù)是基于節(jié)點和動模板之間的水平距離。力從零斜線上升或斜線降低到零是為了保證應(yīng)用能順利和盡量減少任何間斷。沒有接觸點和接觸平均值計算。節(jié)點的距離和速度相對于動模板應(yīng)采用總的坐標(biāo)系統(tǒng)和適用于矢量單元坐標(biāo)的接觸和摩擦力。不過,這種做法是能夠接受的結(jié)果,正如變形的合模基數(shù)很小。庫侖摩擦力適用于同樣的方法。
主要缺點是大量的分界節(jié)點都需要有充分代表性的移動接觸力。不幸的是,這有太多的柔性體自由度和并且無法計算次數(shù)。現(xiàn)在,并不是把這些節(jié)點作為邊界節(jié)點,他們?nèi)允莾?nèi)部節(jié)點。從純理論的角度看,當(dāng)使用內(nèi)部節(jié)點作為邊界節(jié)點時結(jié)果的準(zhǔn)確性無法保證。然而,更多的選擇標(biāo)準(zhǔn)模式,可以減少誤差。比較采用內(nèi)節(jié)點的模型對對應(yīng)采用表面節(jié)點的滑動模板會有一個非常一致的結(jié)果,同時還會加快計算速度。因此,我們使用這一模型進行模擬后,其他方法都沒有測試過,但它們中的一些曾在上述中
圖3 動模板彈性模型
-12-