《人教版八年級(jí)上冊(cè)數(shù)學(xué) 第十一章三角形單元測(cè)試卷(無(wú)答案)》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版八年級(jí)上冊(cè)數(shù)學(xué) 第十一章三角形單元測(cè)試卷(無(wú)答案)(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、《三角形》單元測(cè)試卷
一、選擇題(每題4分,10個(gè)小題,共40分)
1、一個(gè)三角形三個(gè)內(nèi)角的度數(shù)之比為2:3:7,這個(gè)三角形一定是( )
A.直角三角形 B.等腰三角形 C.銳角三角形 D.鈍角三角形
2、現(xiàn)有兩根木棒,它們的長(zhǎng)分別是40cm和50cm,若要釘成一個(gè)三角形木架,則在下列四根木棒中應(yīng)選取長(zhǎng)為( )
A.100cm的木棒 B.90cm的木棒 C.40cm的木棒 D.10cm的木棒
3、若一個(gè)三角形的兩邊長(zhǎng)是9和4且周長(zhǎng)是偶數(shù),則第三邊長(zhǎng)是( )
A.5 B.7 C.8 D.13
4、等腰三角形的邊長(zhǎng)為1和2
2、,那么它的周長(zhǎng)為( )
A.5 B.4 C.5或4 D.以上都不對(duì)
5、多邊形的每一個(gè)內(nèi)角都等于150°,則此多邊形從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線共有( )條.
A.7 B.8 C.9 D.10
6、一個(gè)多邊形的內(nèi)角和比它的外角的和的2倍還大180°,這個(gè)多邊形的邊數(shù)是( )
A.5 B.6 C.7 D.8
7、只用下列圖形不能進(jìn)行平面鑲嵌的是( )
A.三角形 B.四邊形 C.正五邊形 D.正六邊形
8、如圖2,在△ABC中,AB
3、=AC,BD平分∠ABC,若∠BDC=120°,則∠A的度數(shù)為( )
A.110° B.100° C.80° D.60°
9、一個(gè)多邊形的邊數(shù)和所有對(duì)角線的條數(shù)相等,則這個(gè)多邊形是( )
A.四邊形 B.五邊形 C.六邊形 D.七邊形
10、如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),則∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,試著找一找這個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是( )
A、∠1+∠2=2∠A B、∠1+∠2=∠A
C、∠A=2(∠1+∠2) D、∠1+∠2=∠A÷2
二、填空題(每題4分,
4、6個(gè)小題,共24分)
11、一個(gè)多邊形的每一個(gè)內(nèi)角都相等,且比它的一個(gè)外角大100°,則
邊數(shù)n=___ __。
12、如圖,正方形ABCD中,截去∠B、∠D后,∠1、∠2、∠3、∠4的和為 。
13、等腰三角形的頂角與一個(gè)外角的和等于210°,則頂角度數(shù)
為 度。它的周長(zhǎng)是18,一條邊的長(zhǎng)是5,則其他兩邊的長(zhǎng)是____ _ _。
14、小明在進(jìn)行多邊形內(nèi)角和計(jì)算時(shí),求得的內(nèi)角和為1125°,當(dāng)發(fā)現(xiàn)錯(cuò)誤之后,重新檢查,發(fā)現(xiàn)少加了一個(gè)內(nèi)角,則少加的這個(gè)內(nèi)角度為 度。
15、小亮從A點(diǎn)出發(fā),沿直線前
5、進(jìn)10米后向左轉(zhuǎn)30°,再沿直線前進(jìn)10米,又向左轉(zhuǎn)30°,……照這樣走下去,他第一次回到出發(fā)地A點(diǎn)時(shí),一共走了 米.
16、過(guò)m邊形的一個(gè)頂點(diǎn)有7條對(duì)角線,n邊形沒(méi)有對(duì)角線,k邊形共有k條對(duì)角線,則
(m-k)n的值是 。
三、解答題(9個(gè)小題,共86分)
17、(6分)如圖8,按要求作圖。
(1)過(guò)點(diǎn)A畫(huà)高AD;
(2)過(guò)點(diǎn)B畫(huà)中線BE;
(3)過(guò)點(diǎn)C畫(huà)角平分線CF.
18、(8分)如圖,四邊形ABCD中,∠A=∠B,∠C=∠D,試說(shuō)明AB∥CD的理由
19、(8分)如圖,它是一個(gè)大型模板,設(shè)計(jì)要求BA與CD相
6、交成20°角,DA與CB相交成40°角,
現(xiàn)測(cè)得∠A=145°,∠B=75°,∠C=85°∠D=55°,就斷定這塊模板是合格的,這是為什么?
20、(10分)△ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)O。
(1)若∠ABC = 40°,∠ACB = 50°,則∠BOC =_______。
(2)若∠ABC +∠ACB =116°,則∠BOC =_______。
(3)若∠A = 76°,則∠BOC =_______。
(4)若∠BOC = 120°,則∠A =_______。
(5)你能找出∠A與∠BOC 之間的數(shù)量關(guān)系嗎?
21、(10分)已知:
7、如圖,AC和BD相交于點(diǎn)O,說(shuō)明:AC+BD>AB+CD。
圖5
22、(10分)如圖5,△ABC中,BD是∠ABC的角平分線,DE∥BC,交AB于E,
∠A=60°,∠BDC=95°,求△BDE各內(nèi)角的度數(shù).
23、(10分)已知△ABC的周長(zhǎng)是24cm,三邊a、b、c
滿(mǎn)足c+a=2b,c-a=4cm,求a、b、c的長(zhǎng).
圖8
24、(12分)如圖8,四邊形ABCD中,∠A=∠C=90°,BE、CF分別是∠B、∠D的平分線.
(1)∠1與∠2有何關(guān)系,為什么?
(2)BE與DF有何關(guān)系?請(qǐng)說(shuō)明理由.
8、
25、(12分)我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說(shuō),使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留一絲空白,又不互相重疊,這在幾何里叫做平面密鋪(鑲嵌).我們知道,當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角的和為360°時(shí),就能夠拼成一個(gè)平面圖形.某校研究性學(xué)習(xí)小組研究平面密鋪的問(wèn)題,其中在探究用兩種邊長(zhǎng)相等的正多邊形做平面密鋪的情形時(shí)用了以下方法:
如果用x個(gè)正三角形、y個(gè)正六邊形進(jìn)行平面密鋪,可得60°×x+120°×y=360°,化簡(jiǎn)得x+2y=6.因?yàn)閤、y都是正整數(shù),所以只有當(dāng)x=2,y=2或x=4,y=1時(shí)上式才成立,即2個(gè)正三角形和2個(gè)正六邊形或4個(gè)正三角形和1個(gè)正六邊形可以拼成一個(gè)無(wú)縫隙、不重疊的平面圖形,如圖12所示中的(1)、(2)、(3).
①請(qǐng)你依照上面的方法研究用邊長(zhǎng)相等的x個(gè)正三角形和y個(gè)正方形進(jìn)行平面密鋪的情形,并按圖(4)中給出的正方形和正三角形的大小大致畫(huà)出密鋪后的圖形的示意圖(只要畫(huà)出一種圖形即可);
②如用形狀、大小相同的如圖13方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請(qǐng)?jiān)诜礁窦堉挟?huà)出密鋪的設(shè)計(jì)圖.
圖12
3 / 3