557_大學(xué)生方程式賽車設(shè)計(jì)(制動(dòng)與行走系統(tǒng)設(shè)計(jì)36張CAD圖)
557_大學(xué)生方程式賽車設(shè)計(jì)(制動(dòng)與行走系統(tǒng)設(shè)計(jì)36張CAD圖),大學(xué)生,方程式賽車,設(shè)計(jì),制動(dòng),行走,系統(tǒng),36,cad
汽車氣候室氫排放系統(tǒng)實(shí)驗(yàn)裝置模型的測(cè)定
馬丁·威廉曼恩,克里斯丁·巴赫,菲利普·諾瓦克,安德烈·菲舍爾 ,馬提亞·希爾。
EMPA,瑞士聯(lián)邦材料測(cè)試與研究實(shí)驗(yàn)室,發(fā)動(dòng)機(jī)實(shí)驗(yàn)室,CH-8600,2006年9月,瑞士
EMPA,瑞士聯(lián)邦材料測(cè)試與研究實(shí)驗(yàn)室,空氣污染/環(huán)境技術(shù)實(shí)驗(yàn)室,CH-8600,2006年9月,瑞士
文章信息
文章歷史:2007年3月21日 收到;2007年9月28日 收到修改稿(2007年9月28日); 2007年11月26日 在線截止。
關(guān)鍵詞: 燃料電池 氣體燃料 氫 系統(tǒng)排放 測(cè)試單元 濃度測(cè)量
摘要
由于空氣質(zhì)量,溫室氣體二氧化碳的排放和化石燃料短缺的問(wèn)題,許多車用氣體燃料(天然氣、沼氣、氫氣等)正在研究和開發(fā)。汽車必須證明他們的排氣排放量和系統(tǒng)的整體排放量(包括運(yùn)行損耗)仍低于一定的安全范圍后才可使用。本文提出一個(gè)成本效益即通過(guò)監(jiān)測(cè)系統(tǒng)排放的氣態(tài)氫或其他燃料動(dòng)力汽車在一個(gè)裝有空調(diào)的底盤測(cè)功機(jī)測(cè)試單元,常用于低環(huán)境要求的汽油車廢氣排放測(cè)試。唯一額外需要的設(shè)備是一個(gè)能感知低濃度氣體(如氫氣)的傳感器。該方法是基于濃度測(cè)量和動(dòng)態(tài)質(zhì)量平衡的模型。實(shí)驗(yàn)研究表明,非常低的排放量可以被記錄下來(lái)。此外,如空氣交換率的誤差范圍和靈敏度可被量化。
1。 引言
氣體燃料車輛越來(lái)越常見,這是因?yàn)樗麄兿啾绕蛙嚭筒裼蛙嚤憩F(xiàn)出許多優(yōu)點(diǎn) [1] 。在一些國(guó)家,液化石油氣的價(jià)格顯著低于于液體燃料,因?yàn)樗跓捰凸に囍惺钱?dāng)成“廢物”丟掉的。天然氣作為燃料所提供的和廢氣排放效益要高于汽油和柴油。此外,生物甲烷作為天然氣使用顯示了一個(gè)最高的磁場(chǎng)對(duì) 輪的效率和最佳的合作 效率和使生物能源之間的得到最好的平衡以及高效利用廢物 [1] 。 氫作為燃料用于燃料電池和內(nèi)燃機(jī)內(nèi),其可能在未來(lái)汽車技術(shù)發(fā)展中起到重要的推進(jìn)性作用。氫動(dòng)力汽車的發(fā)展也受限于空氣質(zhì)量因素,和其他溫室氣體的排放及化石燃料供應(yīng)等問(wèn)題 [2,3] 。
所有這些氣態(tài)燃料都有不同的燃料儲(chǔ)存方式,如高壓氣化,低溫液化,金屬氫化物或其他的,均在一定壓力下操作完成。開發(fā)商擁有極大的興趣,因?yàn)橹圃焐毯土⒎ㄕ吣軌虮O(jiān)控這些氣態(tài)燃料系統(tǒng)的真是整體排放情況。這適用于以下兩種情況,已停的汽車要改變周圍環(huán)境和剛啟動(dòng)運(yùn)行或停止的汽車要改變廢氣排放 [4,5] 。
所有這些情況都可以在嵌入人工氣候室的底盤測(cè)功機(jī)中模擬。 但是,這需要耗費(fèi)大的力量去確保氣候室的密封性,這樣蒸發(fā)排放量就可以通過(guò)直接檢測(cè)室內(nèi)氣體濃度的增加量獲得。這種測(cè)試汽油車蒸發(fā)碳?xì)浠衔锏呐欧帕康姆椒ū仨氃赱6,7]密閉的測(cè)量室中進(jìn)行(嚴(yán)格密封)或采用所謂的點(diǎn)光源的測(cè)量法。然而棚式方法適用于測(cè)試停駐的汽車,運(yùn)行損耗會(huì)產(chǎn)生一些嚴(yán)重的的密封性問(wèn)題,因此在底盤測(cè)功機(jī)內(nèi)需要密封棚。由于氫的特殊性,很難使殼體的嚴(yán)格密封以進(jìn)行蒸發(fā)排放的碳?xì)浠衔锏臏y(cè)量。在備選點(diǎn)源上油箱所有潛在的泄漏點(diǎn)需要配備漏斗或通風(fēng)口保證適當(dāng)?shù)目諝饬魍?,?qiáng)大的分析儀會(huì)收集所有的排放氣體,并能測(cè)量其濃度。 因此,這種方法需要被擴(kuò)展延伸以適應(yīng)各種車輛的需要,并且一個(gè)測(cè)試系統(tǒng)并不能確保測(cè)量的總蒸發(fā)排放量的準(zhǔn)確性。
另外,本文提出的這種測(cè)量運(yùn)行損耗和應(yīng)用質(zhì)量平衡法與氣候試驗(yàn)的通風(fēng)設(shè)備測(cè)量汽車氣體燃料的系統(tǒng)排放的方法。它顯示了什么樣的傳感器設(shè)備是必要的,源排放量是如何計(jì)算的。該方法是通過(guò)實(shí)驗(yàn)驗(yàn)證的,敏感性分析也提出了進(jìn)行一定質(zhì)量的測(cè)量時(shí)限制條件必須得到滿足。
2. 方法論
2.1 質(zhì)量平衡
這種方法的基本思路是質(zhì)量守恒。如圖1所示氣候室內(nèi)的底盤測(cè)功機(jī),導(dǎo)出質(zhì)量平衡方程(1)。流入和流出室內(nèi)的氣態(tài)物質(zhì)(稱之為G)的質(zhì)量的變化時(shí)不同的。假設(shè)氣體和其他物質(zhì)之間沒有發(fā)生化學(xué)反應(yīng)。這是氫氣,甲烷和丙烷在室溫下濃度低于1ppm的條件[8] 。
(1)
表示室內(nèi)G氣體變化的質(zhì)量,表示流入室內(nèi)的G氣體的總質(zhì)量,表示流出室內(nèi)的G氣體的總質(zhì)量,表示從通風(fēng)設(shè)備中流入室內(nèi)的G氣體質(zhì)量,流入汽車內(nèi)G氣體的質(zhì)量。所有變量均為時(shí)間函數(shù)。
大規(guī)模的燃?xì)釭將流入氣候室。因此,通風(fēng)空氣的質(zhì)量和進(jìn)入空氣中的氣體G的濃度需要被測(cè)量。進(jìn)入室內(nèi)另一部分氣體是從汽車?yán)镎舭l(fā)出來(lái)的,這是有利的。
不同情況下流入氣候室的G氣體:
預(yù)期的空氣流通。
泄漏。室門以及渠道電纜和管道不密閉,所以有些漏氣。多數(shù)人工氣候室有微壓以確保所有開口空氣能流出,由于流入潮濕的空氣中,在低溫下操作時(shí),會(huì)導(dǎo)致危險(xiǎn)物冰的形成,另外擾亂室內(nèi)濕度的控制(圖1)。
如果車輛正在運(yùn)行,并且由一個(gè)消耗空氣的系統(tǒng)進(jìn)行驅(qū)動(dòng)(發(fā)動(dòng)機(jī)或燃料電池系統(tǒng)),相應(yīng)的空氣供給可以從腔室外部 或腔室內(nèi)部被使用。由于氣體通常被排出室外并在室外測(cè)量,后者也是一個(gè)流出的氣體G的質(zhì)量平衡的情況。
測(cè)量所有的流出位置處的G氣體的質(zhì)量和濃度顯然是不可能的,但是這個(gè)問(wèn)題可以通過(guò)以下的方法變向解決。
底盤測(cè)功器對(duì)廢氣排放測(cè)量的車輛配有風(fēng)扇。連同的通風(fēng)的空調(diào)室,這可能會(huì)導(dǎo)致高的湍流,腔內(nèi)氣體G的濃度可以被認(rèn)為是均勻的。換句話說(shuō),混合時(shí)間常數(shù)在腔必須明顯低于空氣匯率常數(shù)。必須保證氣候室內(nèi)無(wú)通風(fēng)不良的死區(qū)。在大多數(shù)情況下,底盤測(cè)功器是安裝在氣候室,室內(nèi)的測(cè)功器作為破壞電動(dòng)機(jī)的加強(qiáng)室,是包含在室內(nèi)的。因此,它必須可使艙內(nèi)的通風(fēng)設(shè)備打開并增加額外的通風(fēng)設(shè)備。
如果室內(nèi)的G氣體確實(shí)是均勻分布的,則這個(gè)濃度測(cè)量也適用所有的室外測(cè)試。只要壓力能保持室內(nèi)外通風(fēng)穩(wěn)定,流出室內(nèi)的氣體總質(zhì)量等于流入室內(nèi)的氣體總質(zhì)量。因此,這是足以測(cè)量流入室內(nèi)空氣質(zhì)量的。
此外,由于濃度在氣候室是均勻的,它需要在同一位置被測(cè)量。
當(dāng)然,流入室內(nèi)的G氣體不能直接測(cè)量。假設(shè)為理想氣體,則可能是通過(guò)如下確定。任何氣體質(zhì)量是密度和體積的乘積。
(2)
所包含的G氣體的質(zhì)量為
(3)
其中是氣體G的濃度和密度。由于測(cè)量將在氣候室內(nèi)進(jìn)行并且不持續(xù)很久,則可以假定在此期間溫度和壓力保持穩(wěn)定,密度不變。因此,可進(jìn)行足夠的空氣體積和G氣體濃度的測(cè)量,以確定其質(zhì)量流量。 對(duì)于室內(nèi)認(rèn)為
(4)
ch代表氣候室。假設(shè)流出腔室的空氣的流量等于流入腔室內(nèi)的氣體G的流量,并是分布是均勻的,由式(1)-(4)得
(5)
因此
(6)
因此,將系統(tǒng)的排放量作為單位時(shí)間的流出質(zhì)量以及知道腔體體積、密度和測(cè)量進(jìn)入腔室的空氣的體積流量以及腔內(nèi)氣體G的流量、濃度??捎?jì)算出G氣體的質(zhì)量。由于流入和流出的壓力和溫度都是一樣的,流量和密度都可以被認(rèn)為是相等的。
2.2 測(cè)量設(shè)備
商業(yè)氣相色譜儀(還原氣體分析儀 (RGA3),微量分析公司,加利福尼亞州,美國(guó))被用來(lái)測(cè)量氣候室內(nèi)的。該RGA3是超微量氣體檢測(cè)系統(tǒng),能夠監(jiān)測(cè)濃度低至十億分之一的還原性氣體,如。該儀器由一個(gè)微處理器控制的氣體色譜儀,利用還原性氣體的方法檢測(cè)。
5A分子篩合成空氣預(yù)處理SOFNOCAT脫除和反應(yīng)的雜質(zhì)(額)作為載氣。 等分的空氣樣本被分為超過(guò)1毫升的樣品,定量環(huán)為20毫升/分鐘的速率。分離感興趣的樣本組件,在一個(gè)等溫芯棒加熱的色譜柱烤箱中。色譜柱(1S,60/80 mesh;1/8"×30")主要用于去除二氧化碳、水和碳?xì)浠衔铩kS后和的分離分析柱(分子篩5A,60/80 mesh;1/8"×30")混和進(jìn)入檢測(cè)器,包含氧化汞。氧化汞之間(固體)和和合汞蒸汽進(jìn)行反應(yīng),進(jìn)行定量的方式是通過(guò)一個(gè)紫外光度計(jì)進(jìn)行的。列需保持在75oC;探測(cè)器是加熱到270oC??罩械暮蜆颖局写_定汞的數(shù)量成正比。
在連續(xù)觀測(cè)濃度的實(shí)驗(yàn)室內(nèi),每2分鐘進(jìn)行一次測(cè)試。在每個(gè)測(cè)試周期的開始和結(jié)束的周圍空氣中的濃度(濃度的流入)需進(jìn)行30分鐘的測(cè)試。 通常情況下,濃度是非常均勻的,在短時(shí)間內(nèi)的一個(gè)測(cè)試周期,并在576±94ppb的范圍內(nèi)[9]。
通過(guò)稀釋單位(MKAL稀釋,測(cè)量技術(shù)有限公司,哈普施泰特,德國(guó)),對(duì)兩個(gè)高濃度的參考?xì)怏w(50和100.2ppm梅塞爾瑞士,瑞士)進(jìn)行動(dòng)態(tài)稀釋至零空氣敏感的范圍內(nèi)。稀釋單元間接引用瑞士聯(lián)邦氣流標(biāo)準(zhǔn)進(jìn)行計(jì)量。不同的兩個(gè)高濃度的混合物重合標(biāo)準(zhǔn)與對(duì)方表現(xiàn)出優(yōu)異的協(xié)議NOAA/GDM規(guī)模[10]。的檢測(cè)限為±10ppb和衡量標(biāo)準(zhǔn)的不確定性為5%。
2.3 分析方法
正如上一節(jié)中所述的低濃度的氣體不能在高時(shí)間分配率的情況下測(cè)量,即在幾秒鐘內(nèi)。設(shè)備描述表示允許2分鐘的采樣率。因此方程(6)需要被分解。
離散化最直接,最簡(jiǎn)單的方法是由最后測(cè)量值取代腔室的濃度。對(duì)于時(shí)間k步結(jié)果為
(7)
其中T是采樣間隔[11]。由于這兩種環(huán)境濃度的氣體G和通風(fēng)氣流通常超過(guò)一個(gè)時(shí)間間隔的變化非常少。如果使用上面的開頭或結(jié)尾的采樣值的時(shí)間間隔。然而,腔室的濃度有一個(gè)變化顯著,因此平均濃度是取采樣步驟中測(cè)量它的任一端的近似值的平均值。質(zhì)量平衡守恒
(8)
所以
(9)
在數(shù)學(xué)上更復(fù)雜,但也更準(zhǔn)確的是通過(guò)求解離散差分方程(5)的分析新增一個(gè)時(shí)間步長(zhǎng),需要一定的假設(shè)。
這里是自由輸入信號(hào)(即 ,,)的任意時(shí)間的函數(shù)。 因此,如果必要的話,它可能會(huì)測(cè)量在高時(shí)間分辨率的通風(fēng)氣流,并利用這段時(shí)間進(jìn)行計(jì)算,但通常這種流動(dòng)是合理的。氣體G的環(huán)境濃度,通常是恒定的,如果不工作時(shí)遭受一個(gè)巨大的非均勻氣源。 當(dāng)然是時(shí)間的函數(shù)及車輛如何發(fā)出的氣體G是未知的。如果流出的總質(zhì)量給出,最極端的情況下,如果所有被釋放后,立即計(jì)算時(shí)間間隔的開始或末端(峰值函數(shù),圖2 )。“平均”的情況發(fā)生,如果車輛不斷冒出氣體G。在3.2節(jié)中,式(5)的方法通過(guò)以下三種假設(shè)來(lái)解決。
在早期峰值的情況下,該解決方案的方程(5)中時(shí)間
(10)
因此,某一時(shí)期排放的G氣體質(zhì)量為
(11)
在后期峰值的情況下,得
(12)
(13)
通常情況下:
(14)
(15)
式(11),(13)和(15)看起來(lái)相當(dāng)不同,其輸出保持相似,只要采樣間隔T是比較小的通風(fēng)時(shí)間常數(shù) 。 所以,如果兩個(gè)小的采樣間隔和通風(fēng),則在此方法中的質(zhì)量上升。下節(jié)給出了具體例子,在這里的不同方法(式(11),(13) 和(15))和不同的采樣間隔被應(yīng)用到相同的測(cè)試數(shù)據(jù)中,向大家介紹了,準(zhǔn)確度取決于該系統(tǒng)的不同的參數(shù)。
3. 案例分析
在這里所描述的試驗(yàn)案例均在氣候細(xì)胞底盤測(cè)功機(jī)進(jìn)行了電子探針。所有的數(shù)字值都本測(cè)試設(shè)備得出。
3.1 腔室容積的測(cè)定
采用幾何手段估計(jì)腔室體積是相當(dāng)困難的,因?yàn)檐嚦?,通風(fēng),單位熱交換等都很難形容。因此,測(cè)試一個(gè)明確的體積的氦,其被釋放出來(lái)和它的濃度平衡后,外部封閉,內(nèi)部循環(huán),通過(guò)稀釋估計(jì)腔室體積。每256的標(biāo)準(zhǔn)偏差為8。
3.2 體積流量的識(shí)別和驗(yàn)證
在通風(fēng)的體積流量是不可能直接測(cè)量,但隨著時(shí)間的推移其仍是恒定的,可以通過(guò)以下的試驗(yàn)確定。
如上,可計(jì)量一定體積的氣體如氦注入到單元格(同時(shí)通風(fēng))。之后,單元格中的混合物氦的濃度將跟隨方程(5)或解決方案(10),(12)或(14)中的一個(gè)與停駐的汽車。 測(cè)量結(jié)果如圖3所示。減去隱藏的濃度和建設(shè)的濃度,濃度直線在2000s處達(dá)檢測(cè)上限。
這條直線的斜率是空氣交換率,即。它的倒數(shù)是上面討論的空氣交換的時(shí)間常數(shù),如果一個(gè)腔室容積或通風(fēng)體積流量是已知的,則其他可以計(jì)算出。在此,用給定的腔室容積的體積流0.5605,其標(biāo)準(zhǔn)偏差為0.005。體積流量受環(huán)境壓力的影響,因此,應(yīng)該進(jìn)行蒸發(fā)實(shí)驗(yàn)以確保準(zhǔn)確。
此外,如果通風(fēng)的體積流量通過(guò)測(cè)量是已知的,類似的測(cè)試可用于驗(yàn)證整體模型。 一個(gè)已知量的氦(或氫氣)就在那一刻被釋放并允許在設(shè)備中稀釋,測(cè)量值可通過(guò)微積分(式(11),(13)或(15))計(jì)算出釋放量。這需要反復(fù)檢驗(yàn)。
3.3 蒸發(fā)試驗(yàn)和精度分析
在氫燃料汽車中進(jìn)行氫系統(tǒng)排放測(cè)試。測(cè)試顯示的測(cè)試包括停車時(shí)間從1到2523s,然后加速至3842s,另一個(gè)停車階段是7100s(圖4)。
房地產(chǎn)氫亦進(jìn)行了系統(tǒng)的發(fā)射試驗(yàn) 氫汽車。 這里顯示的測(cè)試包括一個(gè)停車 相從1到2523的小號(hào),然后坐測(cè)試3842 s,其中 另一個(gè)停車階段進(jìn)行監(jiān)測(cè)到7100秒( 圖4 )。
圖4所示的是每間隔2分鐘所測(cè)量出的氫濃度。在右邊則顯示出每個(gè)時(shí)間間隔中汽車的廢氣排放量。他們是用不同的方法和假設(shè)來(lái)計(jì)算出來(lái)的,即(9),(11),(13)和(15)。
在給定的用一單缸容積為256m,通風(fēng)體積流量為0.5605m/s(給定空氣交換時(shí)間常數(shù)為463s或7.72min)和采樣速率為2min的條件下,精確結(jié)果如下:在粗略計(jì)算公式(9)和精確計(jì)算公式(15)均假設(shè)汽車的廢氣排放在超過(guò)一個(gè)采樣時(shí)間間隔后是恒定的情況下兩公式的計(jì)算結(jié)果的差異小于0.5%。用計(jì)算最壞的情況下的方程式(11)和(13)計(jì)算出的值,假定短發(fā)射峰出現(xiàn)在抽樣間隔的開始和末尾,則產(chǎn)生14%和-12%的誤差。然而,從整體的質(zhì)量特性發(fā)射曲線(圖4中,右)中可以看出,令人難以置信的是汽車尾氣排放達(dá)到峰值,并且這個(gè)峰值恰巧與取樣同步。這樣,當(dāng)尾氣排放開始或停止時(shí)真正的局部準(zhǔn)確度可能在-12%和14%間無(wú)常的變化。然而整體或綜合的排放將在所有可行的情況中顯示出一個(gè)精度更高的結(jié)果。
從圖4和圖5,可以很容易的看出,該車輛在運(yùn)行時(shí)顯示出相當(dāng)小的系統(tǒng)排放量,即每21min的車程的排放量為0.0046g(3842s)。相反當(dāng)系統(tǒng)停止后卻上升顯著。在發(fā)動(dòng)機(jī)停止后20min(1200s)內(nèi)最大的氣流量可達(dá)到4.32mg/min并且之后有所下降。很明顯某些系統(tǒng)氫氣部分泄露后直到它們用盡了系統(tǒng)才停止。
注意,所有的變量,如風(fēng)流量和環(huán)境濃度被認(rèn)為是在每一個(gè)時(shí)間步內(nèi)是恒定的。如果它們緩慢的變化并且它們的值是測(cè)量的,則這種方法也可以應(yīng)用在相同的精確度上。
3.4 靈敏度分析
對(duì)于這種方法的靈敏度測(cè)量誤差可以由標(biāo)準(zhǔn)誤差傳播方法來(lái)分析【12】。它表明室濃度對(duì)測(cè)量中的隨機(jī)誤差在一步步的結(jié)果中有相當(dāng)大的影響,產(chǎn)生兩個(gè)不同的測(cè)量值。然而這些誤差是當(dāng)積分發(fā)射時(shí)補(bǔ)償所產(chǎn)生的。
濃度值的系統(tǒng)性誤差,即室溫值和外界環(huán)境下的值之間的偏差將導(dǎo)致一個(gè)優(yōu)先于積分信號(hào)的不正確的線性趨勢(shì)。這樣的趨勢(shì)可以很容易的被檢測(cè)到,如果被測(cè)試的車輛顯示在零排放階段,如在夜晚靜止存放后?;蛘哌@種偏置能過(guò)通過(guò)使用相同傳感器對(duì)外界的(流入)和燃燒室內(nèi)的濃度進(jìn)行測(cè)量去減少,這種方法是被推薦的。
此外,這種方法是對(duì)取樣率和換氣率的比值的采樣。
這種靈敏度在下面的例子中由于忽略媒介數(shù)據(jù)點(diǎn)而被突出。用這種方式,采樣率可以很容易的被模擬成為一個(gè)2min的多原始采樣。可以看出,在表1中通過(guò)增加采樣時(shí)間使理論范圍內(nèi)的不確定性增加。當(dāng)采樣時(shí)間達(dá)到與空氣交換時(shí)間常量近似值7.72min,即6或8min時(shí),然后最大的不確定性上升到50%以上,從而單步的值變得有些不可靠了。同時(shí),式(9)簡(jiǎn)化方法的誤差也上升時(shí),采樣時(shí)間增加。這一發(fā)現(xiàn)正好與Shannon信息定理的假設(shè)即采樣頻率應(yīng)該比最高頻率的兩倍更高,因此,在這里,采樣瑩明顯快于空氣交換率的一半。因此,采樣速率2min滿足香農(nóng)定理,作為系統(tǒng)時(shí)間常數(shù)(空氣交換率)是7.72min,這導(dǎo)致上述-12%到14%的準(zhǔn)確的。
同樣,由于在實(shí)踐中車輛的排放測(cè)量抽樣是不會(huì)發(fā)生在一個(gè)具有多個(gè)峰的峰狀的方式,積分精度將大優(yōu)于最大的局部誤差提示。這樣在圖6中也可以看出,其中的累積氫氣排放曲線幾乎與四個(gè)不同的采樣率是相等的。最后的誤差相比于2min采樣,8min采樣誤差能低1%。
4. 結(jié)論
本文介紹了一個(gè)來(lái)衡量汽車氣體燃料排放系統(tǒng)的方法。該方法是基于試驗(yàn)存儲(chǔ)單元中的濃度測(cè)量和動(dòng)態(tài)質(zhì)量平衡計(jì)算。每小時(shí)排放量低至2克也易于檢測(cè)。。
此方法是適用時(shí)需滿足如下列條件:
·測(cè)試單元內(nèi)部通風(fēng)是良好,室內(nèi)濃度可以被認(rèn)為是均勻分布的。
·空氣交換率至少低于兩倍的采樣率。準(zhǔn)確性隨著采樣率的上升和空氣交換率下降而上升。
·必須測(cè)量空氣交換率和污染氣體的流入(環(huán)境)濃度。
如果測(cè)試單元的空調(diào)安裝有超壓系統(tǒng),那后者是很易實(shí)現(xiàn)的,在空調(diào)中所有流入的氣體都會(huì)通過(guò)A/C管。
這種方法已被驗(yàn)證實(shí)驗(yàn)證明,它適用于實(shí)踐并能給出可靠的結(jié)果和整體質(zhì)量界限。
許多廢氣排放實(shí)驗(yàn)室的空調(diào)房有底盤測(cè)功機(jī),隨著氣態(tài)燃料汽車如天然氣汽車和燃料電池汽車或其他動(dòng)力的汽車的數(shù)目的增加,這成為了一種衡量氣態(tài)燃料汽車系統(tǒng)的排放量和運(yùn)行損失的成本合理的方法。
參考文獻(xiàn)
[1] 歐洲石油化工協(xié)會(huì),歐洲汽車研發(fā)委員會(huì),聯(lián)合研究中心。 歐洲未來(lái)汽車燃料和動(dòng)力系統(tǒng)的顯著分析, 2006年5月,第二版{http://ies.jrc.ec.europa.eu/WTW }。
[2] 羅姆J.汽車和燃料的未來(lái). 能源政策 2006年,34(17):2609-14。
[3] 葉 S,拉克林 DH,吉文C,蓋奇S.氫運(yùn)輸經(jīng)濟(jì)、能源使用、空氣排放的綜合評(píng)估。 虛擬目錄 電子與電氣工程師協(xié)會(huì) 2006年,94(10):1838-51。
[4] Ananthackar V,達(dá)菲JJ. 車載燃料電池汽車、太陽(yáng)能汽車的儲(chǔ)氫效率. 2005年;78(5):687-94。
[5] 張 JS,費(fèi)舍爾TS,德蘭光伏 PV,戈?duì)朖P,瑪?shù)挛?I.儲(chǔ)氫技術(shù)上的回?zé)醾鲗?dǎo)問(wèn)題 . 熱轉(zhuǎn)移反式 美國(guó)機(jī)械工程師協(xié)會(huì) 2005,127(12):1391-9。
[6] 布魯克斯DJ,巴爾杜斯SL,德鉻 HL ,高斯RA,舍比RD. 運(yùn)行損耗測(cè)試程序的開發(fā)。 美國(guó)汽車工程師協(xié)會(huì) 技術(shù)文件輯1992; 9203(22):209-55。
[7] 岡瑟 M,德瓦德 D,拉潘 M,詹森 T,森哥樂(lè) W,巴爾杜斯S 等人. 車輛運(yùn)行的蒸發(fā)損失排放點(diǎn)源和外殼測(cè)量技術(shù). 美國(guó)汽車工程師協(xié)會(huì)特刊 1998年; 1335:131-43。
[8] 格林伍德NN,恩肖 A,化學(xué)元素。 原出版社,2001。 p.56。
[9] Steinbacher M,菲舍爾 A,福爾默 MK,布赫曼乙 B, 萊曼 S,Hueglin C.常年觀測(cè)氫分子()的瑞士郊區(qū)站點(diǎn). 大氣環(huán)境 2007年; 41:2111-24。
[10]諾維PC,郎PM, 馬薩瑞爾 KA,赫斯特DF,邁爾斯R,埃爾金斯 JW.對(duì)流層中的氫分子:全球分布和預(yù)算.地球物理學(xué)報(bào)1999;104:30427-44。
[11]NISE NS。 控制系統(tǒng)工程.紐約:威利; 2006。
[12]Gertsbakh Ⅱ,測(cè)量理論工程.德國(guó):斯普林格出版社; 2003.p.87ff。
2010智能計(jì)算技術(shù)與自動(dòng)化國(guó)際會(huì)議
研究匹配策略和模擬連續(xù)可變傳輸系統(tǒng)的拖拉機(jī)
徐里有 周之禮 曹青梅 張明珠
河南科技大學(xué),洛陽(yáng),河南省,中國(guó)
摘要——本文根據(jù)發(fā)動(dòng)機(jī)測(cè)試結(jié)果,建立了發(fā)動(dòng)機(jī)輸出轉(zhuǎn)矩模型和油耗模型。發(fā)動(dòng)機(jī)轉(zhuǎn)速特性是在當(dāng)發(fā)動(dòng)機(jī)工作在最優(yōu)經(jīng)濟(jì)模式和滿負(fù)荷的工況下,表示發(fā)動(dòng)機(jī)轉(zhuǎn)速和節(jié)流之間的關(guān)系。基于以上工作,提出了連續(xù)變量傳輸(HMCVT)系統(tǒng)的匹配策略。根據(jù)在不同的野外環(huán)境工況,以仿真方法研究了HMCVT系統(tǒng)匹配的策略。這個(gè)研究為測(cè)定HMCVT系統(tǒng)提供了理論設(shè)計(jì)基礎(chǔ)和控制方法。
關(guān)鍵詞——拖拉機(jī);振動(dòng)連續(xù)變量傳輸;匹配策略;仿真
1. 介紹
無(wú)級(jí)變速傳輸系統(tǒng)(HMCVT)是一種新型的一個(gè)機(jī)械傳動(dòng)(MT)聯(lián)合一個(gè)具有一對(duì)液壓?jiǎn)卧簤簜鲃?dòng)(HST)組成的傳動(dòng)裝置。HMCVT通過(guò)組合MT和HST有一個(gè)連續(xù)的變量轉(zhuǎn)移率并在在M[1,2]狀態(tài)下達(dá)到高的效率。只有當(dāng)合理匹配HMCVT系統(tǒng)和發(fā)動(dòng)機(jī),HMCVT系統(tǒng)可以發(fā)揮其優(yōu)勢(shì)。匹配的關(guān)鍵是根據(jù)實(shí)際的工作條件和發(fā)動(dòng)機(jī)特性,發(fā)動(dòng)機(jī)通過(guò)HMCVT系統(tǒng)調(diào)節(jié)速度比工作在最佳狀態(tài),。拖拉機(jī)HMCVT系統(tǒng)速度比的調(diào)節(jié)可以通過(guò)控制位移比的變量液壓泵(PV)和固定液壓馬達(dá)(MF)來(lái)實(shí)現(xiàn)。
目前,國(guó)內(nèi)外的連續(xù)變量傳輸系統(tǒng)的研究匹配主要集中在汽車[3、4、5),并且這個(gè)關(guān)于拖拉機(jī)研究還沒有被報(bào)道。拖拉機(jī)不僅與汽車在結(jié)構(gòu)有區(qū)別,其惡劣的工作條件和頻繁的外載荷波動(dòng)也是與汽車的區(qū)別。這些所有的要求速度比改變都是為了以及時(shí)適應(yīng)拖拉機(jī)變化的負(fù)載和運(yùn)動(dòng)阻力,確保動(dòng)態(tài)性能和經(jīng)濟(jì)性。本文的目的是為拖拉機(jī)解決匹配策略和HMCVT系統(tǒng)的模擬問(wèn)題,為了拖拉機(jī)的控制方法提供理論依據(jù)。
2. 發(fā)動(dòng)機(jī)輸出特性
A. 發(fā)動(dòng)機(jī)輸出轉(zhuǎn)矩
發(fā)動(dòng)機(jī)是一個(gè)更復(fù)雜的系統(tǒng),其輸出轉(zhuǎn)矩是通過(guò)節(jié)流閥開放和發(fā)動(dòng)機(jī)的轉(zhuǎn)速來(lái)改變?;诎l(fā)動(dòng)機(jī)試驗(yàn)的結(jié)果,發(fā)動(dòng)機(jī)穩(wěn)態(tài)輸出轉(zhuǎn)矩和節(jié)氣門打開和旋轉(zhuǎn)速度的關(guān)系可以使用多項(xiàng)式擬合來(lái)建立。發(fā)動(dòng)機(jī)輸出扭矩和油門開啟和旋轉(zhuǎn)速度之間表面關(guān)系用多項(xiàng)式擬合能得到圖.1。
圖1發(fā)動(dòng)機(jī)輸出轉(zhuǎn)矩與節(jié)氣門打開和旋轉(zhuǎn)速度的關(guān)系
b .發(fā)動(dòng)機(jī)的通用特性
發(fā)動(dòng)機(jī)功率和燃料消耗之間的關(guān)系,可以根據(jù)發(fā)動(dòng)機(jī)負(fù)載的每個(gè)轉(zhuǎn)速特性曲線被實(shí)現(xiàn)。然后發(fā)動(dòng)機(jī)有效燃料消耗和旋轉(zhuǎn)速度和轉(zhuǎn)矩之間的曲面關(guān)系可以通過(guò)利用曲線插值擬合獲得。普遍發(fā)動(dòng)機(jī)特性曲線(圖2)可以使用發(fā)動(dòng)機(jī)的數(shù)值模型得到。
在圖2中,曲線ABC是外部特征曲線;曲線BFS和CGT是速度調(diào)節(jié)特性曲線,A、B和C三點(diǎn)分別是最大輸出功率點(diǎn)。在不同的油門位置,盡管引擎可以工作最大輸出功率點(diǎn),在一些最大輸出功率點(diǎn)如點(diǎn)B和C發(fā)動(dòng)機(jī)有純淬裝載能力,這很容易導(dǎo)致發(fā)動(dòng)機(jī)的熄火。因此,在不同的油門位置,發(fā)動(dòng)機(jī)的最大輸出功率點(diǎn)應(yīng)設(shè)置為圖2的點(diǎn)A,F和G。因此,通常,曲線AFG被稱為最佳動(dòng)力性工作曲線,即D曲線。
如果有相同功率的燃油消耗最小點(diǎn)(圖2)是相連的,發(fā)動(dòng)機(jī)的最優(yōu)燃料經(jīng)濟(jì)性能工作曲線隨著圖2中的曲線AST的實(shí)現(xiàn),即E曲線。
圖2引擎通用特性曲線
c .調(diào)節(jié)功能的發(fā)動(dòng)機(jī)轉(zhuǎn)速
發(fā)動(dòng)機(jī)轉(zhuǎn)速的發(fā)動(dòng)機(jī)調(diào)節(jié)功能是當(dāng)負(fù)載的輸出軸改變,車輛傳動(dòng)裝置速度比率是為了維護(hù)發(fā)動(dòng)機(jī)功率的相對(duì)價(jià)值進(jìn)行獨(dú)立煩的控制。如果發(fā)動(dòng)機(jī)工作在每個(gè)相對(duì)功率之間最低燃料消耗的轉(zhuǎn)速,油門開啟和轉(zhuǎn)速的關(guān)系是轉(zhuǎn)速的最優(yōu)燃料經(jīng)濟(jì)性能。如果發(fā)動(dòng)機(jī)的每個(gè)相對(duì)節(jié)流開放工作在最大轉(zhuǎn)矩的旋轉(zhuǎn)速度,,油門的打開和轉(zhuǎn)速的關(guān)系是轉(zhuǎn)速的最佳動(dòng)力性能。發(fā)動(dòng)機(jī)轉(zhuǎn)速的調(diào)節(jié)功能可以擬定為圖3。在圖3,曲線D和E分別是發(fā)動(dòng)機(jī)調(diào)節(jié)特性曲線的優(yōu)化功率和最佳燃油經(jīng)濟(jì)性能。
圖3發(fā)動(dòng)機(jī)的轉(zhuǎn)速調(diào)節(jié)特性
III.匹配策略的HMCVT系統(tǒng)
HMCVT系統(tǒng)的匹配策略如圖.4。發(fā)動(dòng)機(jī)可以通過(guò)HMCVT系統(tǒng)控制發(fā)動(dòng)機(jī)油門打開和調(diào)節(jié)速度比使其工作在最優(yōu)功率性能工作曲線D或最好的燃料經(jīng)濟(jì)性能工作曲線E。在實(shí)際的工作,工作重點(diǎn)應(yīng)該是落在發(fā)動(dòng)機(jī)的速度特性曲由最低穩(wěn)定旋轉(zhuǎn)速度曲線l,外特性曲線w和監(jiān)管線t的區(qū)域。對(duì)于HMCVT系統(tǒng)的拖拉機(jī),每點(diǎn)發(fā)動(dòng)機(jī)的有效工作范圍有一個(gè)和拖拉機(jī)的駕駛速度相對(duì)應(yīng)的驅(qū)動(dòng)力,其具體表達(dá)式給出了公式如下
圖4匹配的HMCVT系統(tǒng)示意圖
這里,F(xiàn)q是拖拉機(jī)的動(dòng)力,kN;Me是發(fā)動(dòng)機(jī)嗎轉(zhuǎn)矩,N·m;ne是轉(zhuǎn)速的發(fā)動(dòng)機(jī),r / min;rd是駕駛的動(dòng)態(tài)半徑wheel,m;i是HMCVT系統(tǒng)的傳動(dòng)比,是HMCVT的系統(tǒng)效率;v是拖拉機(jī)速度,km/h;是練習(xí)場(chǎng)的跟蹤效率,輪式拖拉機(jī)=1.
通過(guò)引用文中的計(jì)算方法[6],每個(gè)發(fā)動(dòng)機(jī)的點(diǎn)的有效工作范圍都對(duì)應(yīng)拖拉機(jī)驅(qū)動(dòng)特性圖的(圖。4)。圖4中,曲線l’,‘w’和t”是分別相對(duì)應(yīng)的發(fā)動(dòng)機(jī)理想的工作邊界曲線l,w和t,h線是拖拉機(jī)受地面膠粘劑力的影響可以提供最大驅(qū)動(dòng)力。
可以從圖4看出,在穩(wěn)定和優(yōu)化電力和燃料經(jīng)濟(jì)性能條件下,當(dāng)拖拉機(jī)工作在一定的速度,有一個(gè)獨(dú)特的理想的發(fā)動(dòng)機(jī)工作曲線對(duì)應(yīng)的拖拉機(jī)的工作狀態(tài)。在發(fā)動(dòng)機(jī)的通用特性曲線,每個(gè)點(diǎn)工作條件都是明確的。發(fā)動(dòng)機(jī)節(jié)氣門打開,理想的轉(zhuǎn)速和轉(zhuǎn)矩有一一對(duì)應(yīng)的HMCVT系統(tǒng)的速度比。 發(fā)動(dòng)機(jī)可以通過(guò)控制油門打開發(fā)動(dòng)機(jī)和調(diào)節(jié)HMCVT系統(tǒng)的速度比工作在最優(yōu)功率性能工作曲線D或最好的燃油經(jīng)濟(jì)性性能工作曲線E。根據(jù)事先確定發(fā)動(dòng)機(jī)的節(jié)流開放和輸出功率的對(duì)應(yīng)關(guān)系,發(fā)動(dòng)機(jī)可以通過(guò)控制發(fā)動(dòng)機(jī)節(jié)氣門打開和HMCVT系統(tǒng)的調(diào)節(jié)速度比工作在特定的工作點(diǎn)。
可以從圖2和圖3看出,不管最佳動(dòng)力性和最佳燃油經(jīng)濟(jì)性性能,發(fā)動(dòng)機(jī)節(jié)氣門打開、旋轉(zhuǎn)速度和輸出功率有一一對(duì)應(yīng)的關(guān)系。在每個(gè)發(fā)動(dòng)機(jī)節(jié)氣門打開時(shí),確保拖拉機(jī)可以工作用不同的速度,HMCVT系統(tǒng)必須有相對(duì)速度比,以保證發(fā)動(dòng)機(jī)工作最優(yōu)工作點(diǎn)。當(dāng)發(fā)動(dòng)機(jī)工作在最優(yōu)動(dòng)力性能的傳輸目標(biāo)速度比率如圖5。當(dāng)發(fā)動(dòng)機(jī)工作在最佳的燃料經(jīng)濟(jì)性能時(shí)的傳輸目標(biāo)速度比率如圖6。目標(biāo)速度比率可以存儲(chǔ)在內(nèi)存單元的控制器內(nèi)。根據(jù)拖拉機(jī)實(shí)際的工作條件,發(fā)動(dòng)機(jī)工作點(diǎn)可以通過(guò)控制HMCVT系統(tǒng)的速度比率調(diào)節(jié)。這樣拖拉機(jī)可以在這樣工作的條件下提供最佳動(dòng)力性和最佳燃油經(jīng)濟(jì)性性能。
圖5。目標(biāo)速度比率的發(fā)動(dòng)機(jī)最優(yōu)功率 圖6。目標(biāo)速度比率的發(fā)動(dòng)機(jī)最佳燃油經(jīng)濟(jì)性
四。仿真分析
在拖拉機(jī)實(shí)際操作中,通常存在兩個(gè)典型工作條件:一是工作在恒定的拖拉機(jī)牽引阻力和發(fā)動(dòng)機(jī)可變節(jié)流打開條件,另一個(gè)是工作動(dòng)機(jī)油門打開發(fā)和的拖拉機(jī)變量牽引電阻條件。在此基礎(chǔ)上,以采取最好的燃料經(jīng)濟(jì)性能的發(fā)動(dòng)機(jī)為例,仿真系統(tǒng)進(jìn)行了對(duì)HMCVT兩個(gè)條件的分析:一是拖拉機(jī)的牽引阻力是常數(shù)和發(fā)動(dòng)機(jī)節(jié)流閥打開變量,另一個(gè)是發(fā)動(dòng)機(jī)節(jié)流閥打開是常數(shù)和拖拉機(jī)牽的引阻力是可變的。在這種情況下,發(fā)動(dòng)機(jī)的轉(zhuǎn)速可以工作目標(biāo)工作點(diǎn),調(diào)節(jié)HMCVT系統(tǒng)速度的比率。
a .常數(shù)牽引阻力和可變節(jié)流
仿真工作條件,拖拉機(jī)牽引阻力Ft=40 kn并保持不變,發(fā)動(dòng)機(jī)起始節(jié)流閥打開?a=50%;經(jīng)過(guò)十年,發(fā)動(dòng)機(jī)節(jié)流閥打開增加到100%;當(dāng)拖拉機(jī)跑到30年,發(fā)動(dòng)機(jī)節(jié)氣門打開減少到70%。仿真結(jié)果表現(xiàn)為圖7。
圖7仿真結(jié)果曲線恒牽引阻力和
可變節(jié)流工況
可以從圖7看出,在t = 10年,發(fā)動(dòng)機(jī)節(jié)流閥打開突然從50%增加100%,拖拉機(jī)是在加速開車期間,發(fā)動(dòng)機(jī)可以工作在HMCVT系統(tǒng)新目標(biāo)旋轉(zhuǎn)速度調(diào)節(jié)速度比。然后,發(fā)動(dòng)機(jī)油門打開保持在100%,拖拉機(jī)是在穩(wěn)定的駕駛周期。在t = 30年,發(fā)動(dòng)機(jī)油門打開突然從100%降低到70%,拖拉機(jī)是在減速駕駛期間,和發(fā)動(dòng)機(jī)也可以工作調(diào)節(jié)MHCVT系統(tǒng)速度比新目標(biāo)的旋轉(zhuǎn)速度。在加速度和減速駕駛期間,HMCVT系統(tǒng)有一些時(shí)間延遲效應(yīng)、發(fā)動(dòng)機(jī)實(shí)際輸出扭矩波動(dòng)的發(fā)生??梢詮姆抡娼Y(jié)果曲線看出,當(dāng)拖拉機(jī)牽引阻力的常數(shù)和發(fā)動(dòng)機(jī)節(jié)流閥打開是可變的時(shí),發(fā)動(dòng)機(jī)的輸出轉(zhuǎn)速和扭矩基本上可以通過(guò)調(diào)節(jié)HMCVT系統(tǒng)的速度比穩(wěn)定在最佳的燃料經(jīng)濟(jì)性能的工作曲線。
b常數(shù)節(jié)流和變量牽引阻力
仿真的工作條件是發(fā)動(dòng)機(jī)油門打開a=70%,保持不變,拖拉機(jī)牽引阻力Ft等于60 kn;開始之后十年,拖拉機(jī)牽引阻力減少到30 kn;當(dāng)拖拉機(jī)跑到30年,拖拉機(jī)的牽引阻力增加到60 kn。仿真結(jié)果表現(xiàn)為圖8。
圖8。仿真結(jié)果曲線恒節(jié)流和變量牽引
可以從圖8看出,在t = 10年前,發(fā)動(dòng)機(jī)的實(shí)際輸出轉(zhuǎn)矩之間和拖拉機(jī)的牽引抵抗扭矩的平衡可以保持,拖拉機(jī)是在穩(wěn)定的駕駛狀態(tài)。在t = 10年,拖拉機(jī)的牽引抵抗扭矩突然從60kn的減少到30 kn,發(fā)動(dòng)機(jī)的轉(zhuǎn)速有增加的趨勢(shì)。為了保持發(fā)動(dòng)機(jī)轉(zhuǎn)速在目標(biāo)速度旋轉(zhuǎn),需要增加HMCVT系統(tǒng)的速度比。拖拉機(jī)是在加速期,直到開車新的力量平衡點(diǎn)出現(xiàn)。這樣,拖拉機(jī)在穩(wěn)定的駕駛周期。在t = 30年代拖拉機(jī)牽引阻力突然從30 kn增加到60 kn,拖拉機(jī)是在減速駕駛期。在穩(wěn)定的駕駛期間,隨著HMCVT系統(tǒng)速度的比率變化速率是不夠的,有一個(gè)發(fā)動(dòng)機(jī)和目標(biāo)工作點(diǎn)之間的某些錯(cuò)誤的工作點(diǎn)。
五結(jié)論
基于發(fā)動(dòng)機(jī)試驗(yàn)結(jié)果,發(fā)動(dòng)機(jī)輸出轉(zhuǎn)矩模型和燃料消耗模型被建立,發(fā)動(dòng)機(jī)轉(zhuǎn)速調(diào)節(jié)的特點(diǎn)被確定。在上述工作的基礎(chǔ)上,研究了匹配HMCVT系統(tǒng)的策略。對(duì)這個(gè)拖拉機(jī)兩個(gè)典型的工作條件進(jìn)行了分析法。結(jié)果表明,匹配策略確定本文是正確的和可行的,合理的匹配引擎和HMCVT系統(tǒng)可以實(shí)現(xiàn)。
致謝
本文的一部分是通過(guò)格蘭特2010 b460009支持醫(yī)生科學(xué)研究河南省教育部門基金科學(xué)和河南大學(xué)基金的自然科學(xué)與技術(shù)的內(nèi)容。
引用
[1]徐里有,周治理,張明珠,等等.設(shè)計(jì)的流體力學(xué)的無(wú)級(jí)變速傳動(dòng)的拖拉機(jī).交易的中國(guó)農(nóng)機(jī)協(xié)會(huì).37卷.2006年7月.5 - 8頁(yè)(在中國(guó))
[2]),Hiroyuki Mitsuya, Keiji Otanl, Tsutomu Ishino,等等.推土機(jī)發(fā)展振動(dòng)傳輸.SAE 94177紙.159 - 168頁(yè)
[3]張寶生,傅鐵軍,周云山,等等.匹配的三角皮帶式無(wú)級(jí)變速傳動(dòng)系統(tǒng)與發(fā)動(dòng)機(jī)及其控制戰(zhàn)略.《吉林大學(xué)(工程和技術(shù)版).2004年1月.65 - 70頁(yè) (在中國(guó))
[4]胡建軍,秦大同,蜀香港.速度比匹配策略金屬v形帶式無(wú)級(jí)變速系統(tǒng).《重慶大學(xué)(自然科學(xué)版)》24卷.6.2001.12.12 - 17頁(yè) (在中國(guó))
[5]t . Udaegawa.模擬方法的影響比改變速度的一個(gè)金屬v形帶CVT車輛響應(yīng).車輛系統(tǒng)設(shè).、1995.6.35 38頁(yè)
[6]徐里有.振動(dòng)特性研究的不斷變量傳輸?shù)耐侠瓩C(jī).博士論文.西安:西安科技大學(xué).2007(在中國(guó))
7
畢 業(yè) 設(shè) 計(jì)(論 文)
題目大學(xué)生方程式賽車設(shè)計(jì)(制動(dòng)與行走系統(tǒng)設(shè)計(jì))
2013年5月30日
大學(xué)生方程式賽車制動(dòng)與行走系統(tǒng)設(shè)計(jì)
摘 要
Formula SAE自1978年在美國(guó)第一次舉辦以來(lái),現(xiàn)已成為一項(xiàng)頂尖的國(guó)際賽事。按比賽規(guī)定,賽車必須在加速,制動(dòng)和操控性能方面表現(xiàn)出色。其中,為保障車輛和駕駛?cè)藛T的安全,賽車的制動(dòng)與行走系統(tǒng)設(shè)計(jì)顯得尤為重要。
本文主要闡述了Formula SAE賽車的制動(dòng)與行走系統(tǒng)設(shè)計(jì)過(guò)程。本次設(shè)計(jì)參照上代及其他參賽團(tuán)體的賽車,進(jìn)行了整體優(yōu)化。本文在分析大賽規(guī)則及往屆成型賽車的基礎(chǔ)上,通過(guò)計(jì)算分析設(shè)計(jì)出制動(dòng)與行走系統(tǒng)的總體方案。其中,制動(dòng)系統(tǒng)以制動(dòng)器為核心,設(shè)計(jì)出制動(dòng)操縱機(jī)構(gòu)(踏板裝置)及制動(dòng)操縱驅(qū)動(dòng)機(jī)構(gòu)(II型液壓雙回路)。行走系統(tǒng)以輪胎為核心,依次進(jìn)行輪輞、輪轂、立柱的設(shè)計(jì)。本次設(shè)計(jì)在分析研究國(guó)外經(jīng)典賽車基礎(chǔ)上,參照實(shí)物及經(jīng)典模型,利用UG對(duì)各零件進(jìn)行三維建模和裝配,利用CAD、CAXA等軟件建立模型進(jìn)行運(yùn)動(dòng)干涉分析,保證設(shè)計(jì)的合理性及優(yōu)良性。
最后,本次設(shè)計(jì)運(yùn)用UG等軟件,對(duì)制動(dòng)系統(tǒng)中的連接件、緊固件、制動(dòng)盤、制動(dòng)踏板、制動(dòng)油路等和行走系統(tǒng)中的立柱、輪轂、輪輞進(jìn)行了仿真及有限元分析,并制造出樣件,對(duì)樣件裝車試驗(yàn),取得良好效果。最終本設(shè)計(jì)的結(jié)果,確保了本賽車具有出色的制動(dòng)性和在極限工況下的安全性。
關(guān)鍵詞:賽車,制動(dòng)及行走系統(tǒng),優(yōu)化,仿真,有限元分析
II
COLLEGE STUDENTS'FORMULA RACING
BRAKE AND WALKING SYSTEM DESIGN
ABSTRACT
Formula SAE held in the United States for the first time since 1978, has now become a top international event. The car's design must be in acceleration, braking and handling performance. Among them, in order to guarantee the safety of the vehicle and driver, braking and walking system design is especially important.
This article mainly elaborated the Formula SAE racing car brake and walking system design process. Design with reference to the parent group and other participants of the car, on the whole optimization. Based on the analysis of the competition rules and past molding car, on the basis of analysis by calculation braking and walking system overall scheme are given. Among them, the braking system to brake as the core, designed the brake operating mechanism and brake control driving mechanism. Walking system to tire as the core, in turn to carry on the rim, hub, pillar design. Refer to physical objects and the classic case in design process, the parts to make use of UG three-dimensional modeling and assembly, optimize the braking control drive mechanism, using CAD, CAXA, such as motion interference analysis, to ensure the rationality of the design and the optimal benign.
Using software such as UG, the design of the braking system of the fittings, fasteners, brake pedal, brake disc and walking system such as columns, in the hub, rim has carried on the simulation and finite element analysis, to ensure that this car has good brake and safety under limit conditions.
KEY WORDS:car, brake and walking system, optimization, simulation, finite element analysis
III
符 號(hào) 說(shuō) 明
輪缸活塞直徑,mm
主缸活塞直徑,mm
地面制動(dòng)力,N
制動(dòng)踏板力,N
車輪與地面的附著力,N
汽車前軸靜負(fù)荷,N
汽車后軸靜負(fù)荷,N
質(zhì)心高度,mm
軸距,mm
汽車質(zhì)心離前軸的水平距離,mm
汽車質(zhì)心離后軸的水平距離,mm
汽車總質(zhì)量,kg
車輪有效半徑,mm
車輪滾動(dòng)半徑,mm
制動(dòng)器對(duì)車輪的制動(dòng)力矩,N·m
管路液壓,MPa
主缸工作容積,mm3
單個(gè)輪缸工作容積,mm3
汽車行駛速度m/s
制動(dòng)踏板行程,mm
地面對(duì)前軸的法向反力,N
地面對(duì)后軸的法向反力,N
制動(dòng)力分配系數(shù)
同步附著系數(shù)
制動(dòng)輪缸的活塞行程,mm
踏板機(jī)構(gòu)及制動(dòng)主缸的機(jī)械效率
IV
目 錄
第一章 概述 1
§1.1 大學(xué)生方程式賽車簡(jiǎn)介 1
§1.2 制動(dòng)系統(tǒng)的重要性 1
§1.3 行走系統(tǒng)的功用 1
第二章 制動(dòng)系設(shè)計(jì) 3
§2.1 制動(dòng)系應(yīng)滿足的主要要求 3
§2.2 制動(dòng)器的結(jié)構(gòu)型式及選擇 3
§2.2.1 鼓式制動(dòng)器 4
§2.2.2 盤式制動(dòng)器 5
§2.3 制動(dòng)系的主要參數(shù)及其選擇 7
§2.3.1 制動(dòng)力與制動(dòng)力分配系數(shù) 7
§2.3.2 同步附著系數(shù) 10
§2.3.3 制動(dòng)器最大制動(dòng)力矩 10
§2.3.4 制動(dòng)器因數(shù) 11
§2.3.5 制動(dòng)器的機(jī)構(gòu)參數(shù)與摩擦系數(shù) 11
第三章 制動(dòng)器的設(shè)計(jì)計(jì)算 13
§3.1 摩擦襯塊磨損特性的計(jì)算 13
§3.2 制動(dòng)器的熱容量和溫升的核算 14
§3.3 盤式制動(dòng)器制動(dòng)力矩的計(jì)算 16
§3.4 駐車制動(dòng)計(jì)算 17
第四章 制動(dòng)器主要零件的結(jié)構(gòu)設(shè)計(jì) 19
§4.1 制動(dòng)盤 19
§4.2 制動(dòng)鉗 19
§4.3 制動(dòng)塊 20
§4.4 摩擦材料 21
§4.5 制動(dòng)輪缸 21
§4.6 制動(dòng)器間隙的調(diào)整方法及相應(yīng)機(jī)構(gòu) 21
第五章 制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的結(jié)構(gòu)型式選擇及設(shè)計(jì)計(jì)算 23
V
§5.1 制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的結(jié)構(gòu)型式選擇 23
§5.2 制動(dòng)管路的分路系統(tǒng) 25
§5.3 液壓制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的設(shè)計(jì)計(jì)算 26
§5.3.1 制動(dòng)輪缸直徑與工作容積 26
§5.3.2 制動(dòng)主缸直徑與工作容積 27
§5.3.3 制動(dòng)踏板力與踏板行程 28
§5.3.4 制動(dòng)主缸的形式 29
第六章 行走系統(tǒng)的設(shè)計(jì) 30
§6.1 汽車行駛系統(tǒng)概述 30
§6.1.1 輪胎 31
§6.1.2 輪輞 31
§6.1.3 輪轂 32
§6.1.4 立柱 33
§6.2 強(qiáng)度校核 34
§6.2.1 制動(dòng)盤緊固螺栓的校核 34
§6.2.2 輪轂螺栓的校核 35
第七章 結(jié) 論 37
參考文獻(xiàn) 38
致 謝 40
附 錄 41
VI
第一章 概述
§1.1 大學(xué)生方程式賽車簡(jiǎn)介
目前,中國(guó)汽車工業(yè)已處于大國(guó)地位,但還不是強(qiáng)國(guó)。從制造業(yè)大國(guó)邁向產(chǎn)業(yè)強(qiáng)國(guó)已成為中國(guó)汽車人的首要目標(biāo),而人才的培養(yǎng)是實(shí)現(xiàn)產(chǎn)業(yè)強(qiáng)國(guó)目標(biāo)的基礎(chǔ)保障之一。
大學(xué)生方程式賽車活動(dòng)是以院系的形式組織學(xué)生參與賽事,重點(diǎn)培養(yǎng)學(xué)生的設(shè)計(jì)、制造能力、成本控制能力和團(tuán)隊(duì)溝通協(xié)作能力,使學(xué)生能夠盡快適應(yīng)企業(yè)需求,為企業(yè)挑選優(yōu)秀適用人才提供平臺(tái);同時(shí)通過(guò)活動(dòng)創(chuàng)造學(xué)術(shù)競(jìng)爭(zhēng)氛圍,為院校間提供交流平臺(tái),進(jìn)而推動(dòng)學(xué)科建設(shè)的提升。
大賽在提高和檢驗(yàn)汽車行業(yè)院校學(xué)生的綜合素質(zhì),為汽車工業(yè)健康、快速和可持續(xù)發(fā)展積蓄人才,增進(jìn)產(chǎn)、學(xué)、研三方的交流與互動(dòng)合作等方面具有十分廣泛的意義。
§1.2 制動(dòng)系統(tǒng)的重要性
汽車作為陸地上的現(xiàn)代重要交通工具,有許多保證其使用性能的大部件,即所謂“總成”組成,制動(dòng)系就是其中一個(gè)重要的總成。它既可以使行駛中的汽車減速,又可以保證停車后的汽車駐留原地不動(dòng)。由此可見汽車制動(dòng)系對(duì)于汽車行駛的安全性和停車的可靠性起著重要的保證作用。
當(dāng)今,隨著高速公路網(wǎng)的不斷擴(kuò)展、汽車車速的提高以及車流密度的增大,對(duì)汽車制動(dòng)系的工作可靠性要求顯得日益重要。因?yàn)橹挥兄苿?dòng)性能良好、制動(dòng)系工作可靠的汽車才能充分發(fā)揮出其高速行駛的動(dòng)力性能并保證行駛的安全性。由此可見,制動(dòng)系是汽車非常重要的組成部分,從而對(duì)汽車制動(dòng)系的結(jié)構(gòu)分析與設(shè)計(jì)計(jì)算也就顯得非常重要了。
§1.3 行走系統(tǒng)的功用
汽車行走系統(tǒng)的功用是:
1、將發(fā)動(dòng)機(jī)傳到驅(qū)動(dòng)輪上的驅(qū)動(dòng)轉(zhuǎn)矩變?yōu)橥苿?dòng)汽車行駛的驅(qū)動(dòng)力,并使驅(qū)動(dòng)輪的轉(zhuǎn)動(dòng)變成汽車在地面上的移動(dòng)。
2、傳遞并承受路面作用于車輪上的各向反力及其所形成的力矩。
3、盡可能緩和不平路面對(duì)車身造成的沖擊和振動(dòng),保證汽車行駛平順性,且與汽車轉(zhuǎn)向系很好地配合工作,實(shí)現(xiàn)汽車行駛方向的正確控制,以保證汽車操縱穩(wěn)定性。
4、支承汽車的全部重量。
42
第二章 制動(dòng)系設(shè)計(jì)
§2.1 制動(dòng)系應(yīng)滿足的主要要求
設(shè)計(jì)制動(dòng)系時(shí)應(yīng)滿足的主要要求:
1、具有足夠的制動(dòng)效能;
2、作可靠;
3、在任何速度下制動(dòng)時(shí),汽車都不應(yīng)喪失操縱性和方向穩(wěn)定性 ;
4、防止水和污泥進(jìn)入制動(dòng)器工作表面;
5、制動(dòng)能力的熱穩(wěn)定性良好 ;
6、操縱輕便,并具有良好的隨動(dòng)性;
7、制動(dòng)時(shí),制動(dòng)系產(chǎn)生的噪聲盡可能小,同時(shí)力求減少散發(fā)出對(duì)人體有害的石棉纖維等物質(zhì),以減少公害;
8、作用滯后性應(yīng)盡可能短;
9、摩擦襯塊應(yīng)有足夠的使用壽命;
10、摩擦副磨損后,應(yīng)有能消除因磨損而產(chǎn)生間隙的機(jī)構(gòu),且調(diào)整間隙工作容易,最好設(shè)置自動(dòng)調(diào)整間隙機(jī)構(gòu);
11、當(dāng)制動(dòng)驅(qū)動(dòng)裝置的任何元件發(fā)生故障并使其基本功能遭到破壞時(shí),汽車制動(dòng)系應(yīng)有音響或光信號(hào)等報(bào)警提示。
§2.2 制動(dòng)器的結(jié)構(gòu)型式及選擇
制動(dòng)器主要有摩擦式、液力式和電磁式等幾種形式。電磁式制動(dòng)器雖有作用滯后性好、易于連接而且接頭可靠等優(yōu)點(diǎn),但因成本高,只在一部分總質(zhì)量較大的商用車上用作車輪制動(dòng)器或緩速器;液力式制動(dòng)器一般只用作緩速器。目前廣泛使用的仍為摩擦式制動(dòng)器。
摩擦式制動(dòng)器是利用固定元件與旋轉(zhuǎn)元件工作表面間的摩擦而產(chǎn)生制動(dòng)力矩使汽車減速或停車。其按摩擦副結(jié)構(gòu)形式不同,可分為鼓式、盤式和帶式三種。帶式制動(dòng)器只用作中央制動(dòng)器;鼓式和盤式制動(dòng)器的結(jié)構(gòu)形式有多種,如下所示:
圖2-1 制動(dòng)器類型[4]
§2.2.1 鼓式制動(dòng)器
鼓式制動(dòng)器是最早形式汽車制動(dòng)器,當(dāng)盤式制動(dòng)器還沒有出現(xiàn)前,它已經(jīng)廣泛應(yīng)用于各類汽車上。鼓式制動(dòng)器又分為內(nèi)張型鼓式制動(dòng)器和外束型鼓式制動(dòng)器兩種結(jié)構(gòu)型式。內(nèi)張型鼓式制動(dòng)器的摩擦元件是一對(duì)帶有圓弧形摩擦蹄片的制動(dòng)蹄,后者則安裝在制動(dòng)底板上,而制動(dòng)底板則緊固在前橋的前梁或后橋橋殼半軸套管的凸緣上,其旋轉(zhuǎn)的摩擦元件作為制動(dòng)鼓。車輪制動(dòng)器的制動(dòng)鼓均固定在輪轂上。制動(dòng)時(shí),利用制動(dòng)鼓的圓柱內(nèi)表面與制動(dòng)蹄摩擦蹄片的外表面作為一對(duì)摩擦表面在制動(dòng)鼓上產(chǎn)生摩擦力矩,故又稱為蹄式制動(dòng)器。外束型鼓式制動(dòng)器的固定摩擦元件是帶有摩擦片且剛度較小的制動(dòng)帶,其旋轉(zhuǎn)摩擦元件為制動(dòng)鼓,并利用制動(dòng)鼓的外圓柱表面與制動(dòng)帶摩擦片的內(nèi)圓弧作為一對(duì)摩擦表面,產(chǎn)生摩擦力矩作用于制動(dòng)鼓,故又稱為帶式制動(dòng)器。在汽車制動(dòng)系中,帶式制動(dòng)器曾僅用作一些汽車的中央制動(dòng)器,通常所說(shuō)的鼓式制動(dòng)器就是指這種內(nèi)張型鼓式結(jié)構(gòu)。各式鼓式制動(dòng)器結(jié)構(gòu)簡(jiǎn)圖如下所示:
圖2-2 鼓式制動(dòng)器簡(jiǎn)圖[4]
(a)領(lǐng)從蹄式(用凸輪張開);(b)領(lǐng)從蹄式(用制動(dòng)輪缸張開);(c)雙領(lǐng)從蹄式(非雙向,平衡式);(d)雙向雙領(lǐng)從蹄式;(e)單向增力式;(f)雙向增力式
§2.2.2 盤式制動(dòng)器
按摩擦副中固定元件的結(jié)構(gòu)不同,盤式制動(dòng)器分為鉗盤式和全盤式制動(dòng)器兩大類。
一、鉗盤式
鉗盤式制動(dòng)器的固定摩擦原件是制動(dòng)塊,裝在與車軸連接且不能繞車軸軸線旋轉(zhuǎn)的制動(dòng)鉗中。
按制動(dòng)鉗的結(jié)構(gòu)形式不同可分為定鉗盤式制動(dòng)器、浮鉗盤式制動(dòng)器等。
(1) (2) (3)
圖2-3 鉗盤式制動(dòng)器的示意圖[4]
(1)固定鉗式 (2)滑動(dòng)鉗式 (3)擺動(dòng)鉗式
1、固定鉗式
制動(dòng)鉗固定不動(dòng),制動(dòng)盤兩側(cè)均有液壓缸。制動(dòng)時(shí)僅兩側(cè)液壓缸中的制動(dòng)塊向盤面移動(dòng)。具有以下優(yōu)點(diǎn):除活塞和制動(dòng)塊外無(wú)其他滑動(dòng)件,易于保證制動(dòng)鉗的剛度;結(jié)構(gòu)及制造工藝與一般鼓式制動(dòng)器相差不多,容易實(shí)現(xiàn)鼓式制動(dòng)器到盤式制動(dòng)器的改革,能很好地適應(yīng)多回路制動(dòng)系的要求。
2、浮動(dòng)鉗式
滑動(dòng)鉗式:制動(dòng)鉗可以相對(duì)制動(dòng)盤作軸向滑動(dòng),其中只在制動(dòng)盤的內(nèi)側(cè)置有液壓缸,外側(cè)的制動(dòng)塊固裝在鉗體上。具有以下優(yōu)點(diǎn):僅在盤的內(nèi)側(cè)具有液壓缸,故軸向尺寸小,制動(dòng)器能進(jìn)一步靠近輪轂;沒有跨越制動(dòng)盤的油道或油管,液壓缸冷卻條件好,所以制動(dòng)液汽化的可能性??;成本低;浮動(dòng)盤的制動(dòng)塊可兼用駐車制動(dòng)。
制動(dòng)鉗的安裝位置可以在車軸之前或之后。由圖2-4可見,制動(dòng)鉗位于車軸后,能使制動(dòng)時(shí)輪轂軸承的合成載荷F減小;制動(dòng)鉗位于車軸前,則可避免輪胎向鉗內(nèi)甩濺污泥。
(a) (b)
圖2-4 制動(dòng)鉗的位置對(duì)輪轂軸承載荷的影響[4]
(a)制動(dòng)鉗位于車軸之前;(b)制動(dòng)鉗位于車軸之后
1—車輪;2—制動(dòng)盤;3—輪轂;
—路面法向反力;—制動(dòng)力;,—與的合力及相應(yīng)的支承反力
,—制動(dòng)襯塊對(duì)制動(dòng)盤的摩擦力及相應(yīng)的支承反力;
—輪轂軸承的徑向合力
二、全盤式
全盤式制動(dòng)器中摩擦副的旋轉(zhuǎn)原件及固定原件均為圓盤形,制動(dòng)時(shí)各盤摩擦表面全部接觸,作用原理如同離合器,故又稱離合器式制動(dòng)器。由于這種制動(dòng)器散熱條件較差,其應(yīng)用遠(yuǎn)遠(yuǎn)沒有鉗盤式制動(dòng)器廣泛。
與鼓式制動(dòng)器比較,盤式制動(dòng)器有如下優(yōu)點(diǎn):
1、熱穩(wěn)定性好;
2、水穩(wěn)定性好;
3、易于構(gòu)成雙回路制動(dòng)系統(tǒng),使系統(tǒng)有較高的可靠性和安全性;
4、尺寸小、質(zhì)量小、散熱好;
5、壓力在制動(dòng)襯塊上分布均勻,故襯塊磨損也均勻;
6、更換襯塊簡(jiǎn)單容易;
7、襯塊與制動(dòng)盤之間的間隙?。?.05~0.15mm),從而縮短了制動(dòng)協(xié)調(diào)時(shí)間;
8、易于實(shí)現(xiàn)間隙自動(dòng)調(diào)整。
在本次設(shè)計(jì)中,我們選擇滑動(dòng)浮鉗盤式。
§2.3 制動(dòng)系的主要參數(shù)及其選擇
整車參數(shù):汽車軸距:=1680mm
車輪滾動(dòng)半徑:=247mm
汽車總質(zhì)量:=302kg 取=10N/kg
滿載時(shí)前軸負(fù)荷:N
滿載時(shí)后軸負(fù)荷:N
滿載時(shí)質(zhì)心高度:=300mm
質(zhì)心距前軸的距離:=840mm
質(zhì)心距后軸的距離:=840mm
對(duì)汽車制動(dòng)性能有著重要影響的制動(dòng)系參數(shù)有:制動(dòng)力及其分配系數(shù)、同步附著系數(shù)、制動(dòng)強(qiáng)度、附著系數(shù)利用率、最大制動(dòng)力矩與制動(dòng)器因數(shù)等。
§2.3.1 制動(dòng)力與制動(dòng)力分配系數(shù)
汽車制動(dòng)時(shí),如果忽略路面對(duì)車輪的滾動(dòng)阻力矩和汽車回轉(zhuǎn)質(zhì)量的慣性力矩,則任一角速度的車輪,器力矩平衡方程式為
(2-1)
式中,--制動(dòng)器對(duì)車輪作用的制動(dòng)力矩,即制動(dòng)器的摩擦力矩,其方向與車輪旋轉(zhuǎn)方向相反,N/m。
--地面作用于車輪上的制動(dòng)力,即地面與輪胎之間的摩擦力,又稱為地面制動(dòng)力,其方向與汽車行駛方向相反,N。
--車輪有效半徑,m。
令
(2-2)
并稱之為制動(dòng)器制動(dòng)力,它是在輪胎周緣克服制動(dòng)器摩擦力矩所需的力。與地面制動(dòng)力的方向相反,當(dāng)車輪角速度時(shí),大小亦相等,且僅由制動(dòng)器結(jié)構(gòu)參數(shù)所決定。即取決于制動(dòng)器的結(jié)構(gòu)形式、尺寸、摩擦副的摩擦系數(shù)及車輪有效半徑等,并與制動(dòng)踏板力即制動(dòng)系的液壓成正比。當(dāng)加大踏板力以加大時(shí),和均隨之增大。但地面制動(dòng)力受著附著條件的限制,其值不可能大于附著力即
(2-3)
或
(2-4)
當(dāng)制動(dòng)器制動(dòng)力和地面制動(dòng)力達(dá)到附著力值時(shí),車輪即被抱死并在地面上滑移。此后制動(dòng)力矩即表現(xiàn)為靜摩擦力矩,而即成為與相平衡以阻止車輪再旋轉(zhuǎn)的周緣力的極限值。當(dāng)制動(dòng)到以后,地面制動(dòng)力達(dá)到附著力值后就不再增大,而制動(dòng)器制動(dòng)力由踏板力的增大使摩擦力矩增大而繼續(xù)上升(見圖2-4)。
根據(jù)汽車制動(dòng)時(shí)的整車受力分析,考慮到制動(dòng)時(shí)的軸荷移動(dòng),可求得地面對(duì)前、后軸車輪的法向反力,為:
(2-5)
汽車總的地面制動(dòng)力為
(2-6)
由以上兩式可求得前、后軸車輪附著力為
(2-7)
上式表明:汽車在附著系數(shù)為任意確定值的路面上制動(dòng)時(shí),各軸附著力即極限制動(dòng)力并非為常數(shù),而是制動(dòng)強(qiáng)度或總制動(dòng)力的函數(shù)。當(dāng)汽車各車輪制動(dòng)器的制動(dòng)力足夠時(shí),根據(jù)汽車前、后軸的軸荷分配,前、后車輪制動(dòng)器制動(dòng)力的分配、道路附著系數(shù)和坡度情況等,制動(dòng)過(guò)程可能出現(xiàn)的情況有三種,即:
1、前輪先抱死拖滑,然后后輪再抱死拖滑;
2、后輪先抱死拖滑,然后前輪再抱死拖滑;
3、前、后輪同時(shí)抱死拖滑。
在以上三種情況中,顯然是最后一種情況的附著條件利用的最好。賽事也規(guī)定必須前、后輪同時(shí)抱死。
由式(2-6)(2-7)不難求得在任何附著系數(shù)的路面上,前、后車輪同時(shí)抱死即前、后軸車輪附著力同時(shí)被充分利用的條件是:
(2-8)
由式(2-8)可知,前、后車輪同時(shí)抱死時(shí),前、后輪制動(dòng)器制動(dòng)力,是的函數(shù)。
由式(2-8)中消去,得
(2-9)
將上式繪成以,為坐標(biāo)的曲線,即為理想的前、后輪制動(dòng)器制動(dòng)力分配曲線,簡(jiǎn)稱曲線,如圖2-5所示。如果汽車前、后制動(dòng)器的制動(dòng)力,能按曲線的規(guī)律分配,則能保證汽車在任何附著系數(shù)的路面上制動(dòng)時(shí),都能使前、后車輪同時(shí)。
圖2-5 制動(dòng)力與踏板力的關(guān)系[4] 圖2-6 某載貨汽車的曲線與線[4]
同步附著系數(shù):線與曲線交點(diǎn)處所對(duì)應(yīng)的路面附著系數(shù)。
汽車滿載時(shí)的同步附著系數(shù)=1。
同步附著系數(shù)下,前后輪同時(shí)抱死時(shí)的制動(dòng)器制動(dòng)力:
N
N
制動(dòng)器制動(dòng)力分配系數(shù):
§2.3.2 同步附著系數(shù)
附著條件的利用情況可用附著系數(shù)利用率來(lái)表示:
(2-10)
式中,——汽車總的地面制動(dòng)力;
——汽車所受重力;
——制動(dòng)強(qiáng)度。
當(dāng)時(shí),,,利用率最高。
§2.3.3 制動(dòng)器最大制動(dòng)力矩
應(yīng)合理地確定前、后輪制動(dòng)器的制動(dòng)力矩,以保證汽車良好的制動(dòng)效能和穩(wěn)定性。
最大的制動(dòng)力是在汽車附著質(zhì)量被完全利用的條件下獲得的。對(duì)于選取較大值得各類汽車,應(yīng)從保證汽車制動(dòng)時(shí)的穩(wěn)定性出發(fā),來(lái)確定各軸的最大制動(dòng)力矩。當(dāng)時(shí),相應(yīng)的極限制動(dòng)強(qiáng)度,故所需的前軸和后軸的最大制動(dòng)力矩為:
N·m
N·m
單個(gè)前輪和后輪所需的最大制動(dòng)力制動(dòng)力矩為:
N·m
N·m
制動(dòng)器所能產(chǎn)生的最大制動(dòng)力矩:
N·m
由此可知,該設(shè)計(jì)能夠滿足汽車安全制動(dòng)的要求。
§2.3.4 制動(dòng)器因數(shù)
(2-11)
式中,——制動(dòng)器的摩擦力矩;
——制動(dòng)盤的總用半徑;
——輸入力,一般取加于兩制動(dòng)塊的壓緊力的平均值為輸入力。
對(duì)于鉗盤式制動(dòng)器,設(shè)兩側(cè)制動(dòng)塊對(duì)制動(dòng)盤的壓緊力均為,則制動(dòng)盤在其兩側(cè)工作面的作用半徑上所受的摩擦力為,此處為盤與制動(dòng)襯塊間的摩擦系數(shù),于是鉗盤式制動(dòng)器的制動(dòng)器因數(shù)為:
§2.3.5 制動(dòng)器的機(jī)構(gòu)參數(shù)與摩擦系數(shù)
1、 制動(dòng)盤的直徑D
當(dāng)輸入力一定時(shí),制動(dòng)盤的直徑越大,則制動(dòng)力矩亦愈大,散熱性能愈好。但直徑的尺寸受輪輞內(nèi)徑的限制,而且的增大也使制動(dòng)盤的質(zhì)量增大,使汽車非懸掛質(zhì)量增大,而不利于汽車的行駛平順性。制動(dòng)盤與輪輞之間應(yīng)有相當(dāng)?shù)拈g隙,此間隙一般不應(yīng)小于20~30,本次設(shè)計(jì)根據(jù)具體情選 ,以利于散熱通風(fēng),也可避免輪輞過(guò)熱而損壞輪胎。一般制動(dòng)盤直徑是輪輞直徑的70%~79%。
二、摩擦片的摩擦系數(shù)
選擇摩擦片時(shí)不僅希望其摩擦系數(shù)高些,更要求其熱穩(wěn)定性好,受溫度和壓力的影響小。各種摩擦材料的摩擦系數(shù)穩(wěn)定值約為0.3~0.5,少數(shù)可達(dá)0.7。設(shè)計(jì)計(jì)算制動(dòng)器時(shí)一般取0.3~0.35。一般說(shuō)來(lái),摩擦系數(shù)愈高的材料其耐磨性愈差。本設(shè)計(jì)選取。
三、摩擦襯塊的面積
由摩擦襯塊外半徑與內(nèi)半徑的比值不大于1.5。所以取mm、mm。如果比值過(guò)大工作時(shí)襯塊的外緣與內(nèi)側(cè)圓周速度相差很多,摩擦不均勻,接觸面積減小,最后將導(dǎo)致制動(dòng)力矩變化大。
在確定摩擦襯塊工作面積時(shí),根據(jù)制動(dòng)襯塊單位面積占有的汽車的質(zhì)量,在1.6~3.5kg/cm2,取cm2。
第三章 制動(dòng)器的設(shè)計(jì)計(jì)算
§3.1 摩擦襯塊磨損特性的計(jì)算
摩擦襯塊的磨損受溫度、摩擦力、滑磨速度、制動(dòng)盤的材質(zhì)及加工情況,以及襯塊本身材質(zhì)等許多因素的影響,因此在理論上計(jì)算磨損性能極為困難。但試驗(yàn)表明,影響磨損的最重要的因素還是摩擦表面的溫度和摩擦力。
從能量的觀點(diǎn)來(lái)說(shuō),汽車制動(dòng)過(guò)程即是汽車的機(jī)械能的一部分轉(zhuǎn)變?yōu)槎纳⒌倪^(guò)程。在制動(dòng)強(qiáng)度很大的緊急制動(dòng)過(guò)程中,制動(dòng)器幾乎承擔(dān)了汽車全部動(dòng)能耗散的任務(wù)。此時(shí),由于制動(dòng)時(shí)間很短,實(shí)際上熱量還來(lái)不及逸散到大氣中就被制動(dòng)器所吸收,致使制動(dòng)盤溫度升高。這就是所謂制動(dòng)器的能量負(fù)荷。能量負(fù)荷越大,則襯片的磨損越嚴(yán)重。
制動(dòng)器的能量負(fù)荷常以比能量耗散率作為評(píng)價(jià)指標(biāo)。比能量耗散率又稱單位功負(fù)荷,它表示單位時(shí)間內(nèi)襯片單位摩擦面積耗散的能量,通常所用的計(jì)量單位為W/㎜2。
雙軸汽車的單個(gè)前輪制動(dòng)器及單個(gè)后輪制動(dòng)器的比能量耗散率分別為
(3-1)
式中,——汽車回轉(zhuǎn)質(zhì)量換算系數(shù);
——汽車總質(zhì)量;
,——汽車制動(dòng)初速度和終速度,m/s;計(jì)算時(shí)轎車取km/h(27.8m/s);
——制動(dòng)時(shí)間,s;
——制動(dòng)減速度,m/s2 ,計(jì)算時(shí)??;
,——前、后制動(dòng)襯塊的摩擦面積;
——制動(dòng)力分配系數(shù)。
在緊急制動(dòng)到時(shí),并可近似地認(rèn)為,則有
(3-2)
根據(jù)上述數(shù)據(jù)計(jì)算得到
s
W/mm2
W/mm2
乘用車的盤式制動(dòng)器在km/h和的條件下,比能量耗散率應(yīng)不大于6.0W/mm2 。因此滿足要求。
磨損特性指標(biāo)也可以用襯塊的比摩擦力即單位摩擦面積的摩擦力來(lái)衡量。
單個(gè)車輪制動(dòng)器的比摩擦力為
(3-3)
式中,——單個(gè)制動(dòng)器的制動(dòng)力矩;
——制動(dòng)盤有效半徑;
——單個(gè)制動(dòng)器的襯塊的摩擦面積,cm2。
則盤式制動(dòng)器的比摩擦力為
N/mm2
因此滿足要求。
§3.2 制動(dòng)器的熱容量和溫升的核算
應(yīng)核算制動(dòng)器的熱容量和溫升是否滿足如下條件
(3-4)
式中,——各制動(dòng)盤的總質(zhì)量;
——與各制動(dòng)盤相連的受熱金屬件(如輪轂、輪輻、輪輞、制動(dòng)鉗體等)的總質(zhì)量;
——制動(dòng)盤材料的比熱容,對(duì)鑄鐵=482J/(kg·K),對(duì)鋁合金=880J/(kg·K);
——與制動(dòng)盤相連的受熱金屬件的比熱容;
——制動(dòng)盤的溫升;(一次由km/h到完全停車的強(qiáng)烈制動(dòng),溫升不應(yīng)超過(guò)15o);
——滿載汽車制動(dòng)時(shí)由動(dòng)能轉(zhuǎn)變的熱能,因制動(dòng)過(guò)程迅速,可以認(rèn)為制動(dòng)產(chǎn)生的熱能全部為前、后制動(dòng)盤所吸收,并按前、后軸制動(dòng)力的分配比率分配給前、后制動(dòng)器,即
(3-5)
式中,——汽車制動(dòng)時(shí)的初速度,可取= =144㎞/h=40m/s
——汽車制動(dòng)器制動(dòng)力分配系數(shù),=0.6875
求得,
J
J
已知,=0.5kg;=7kg
Δt=15oC=15k
則每個(gè)制動(dòng)器的熱容量:
J
對(duì)于前軸的單個(gè)車輪:
J
對(duì)于后軸的單個(gè)車輪:
因此,此制動(dòng)器滿足熱容量和溫升的要求。
§3.3 盤式制動(dòng)器制動(dòng)力矩的計(jì)算
盤式制動(dòng)器的計(jì)算用簡(jiǎn)圖如圖 所示,今假設(shè)襯塊的摩擦表面與制動(dòng)盤接觸良好,且各處的單位壓力分布均勻則盤式制動(dòng)器的制動(dòng)力矩為
(3-6)
式中,——摩擦系數(shù);
——單側(cè)制動(dòng)塊對(duì)制動(dòng)盤的壓緊力(見圖3-1)
——作用半徑。
圖3-1 盤式制動(dòng)器的計(jì)算用圖[4] 圖3-2 鉗盤制動(dòng)器的作用半徑計(jì)算用[4]
對(duì)于常見的扇形摩擦襯塊,如果其徑向尺寸不大,則取為平均半徑或有效半徑已足夠精確。如圖3-2所示,平均半徑為
(3-7)
mm
式中:,—扇形摩擦襯塊的內(nèi)半徑和外半徑。
根據(jù)圖3-2所示,在任一單元面積上的摩擦力對(duì)制動(dòng)盤中心的力矩為,式中為襯塊與制動(dòng)盤之間的單位面積上的壓力,則單側(cè)制動(dòng)塊作用于制動(dòng)盤上的制動(dòng)力矩為
(3-8)
單側(cè)襯塊給制動(dòng)盤的總摩擦力為
(3-9)
得有效半徑為
(3-10)
令,則有
(3-11)
由上述給出的參數(shù)可求出
將,,代入式(3-11)得
mm
由上述知:
制動(dòng)盤單側(cè)壓緊力的確定,即制動(dòng)輪缸對(duì)制動(dòng)襯塊的壓緊力。
則單側(cè)壓緊力為 (3-12)
式中,——考慮制動(dòng)力調(diào)節(jié)裝置作用下的輪缸或管路液壓,取MPa
制動(dòng)輪缸的截面積
m2 (3-13)
則 N
摩擦襯塊的摩擦系數(shù):
制動(dòng)器的最大制動(dòng)力矩為:
N·m
§3.4 駐車制動(dòng)計(jì)算
汽車在上坡路上停駐時(shí)的受力簡(jiǎn)圖如下圖所示:
圖3-3 汽車在上坡路上停駐時(shí)的受力簡(jiǎn)圖[4]
由上圖可得出汽車在上坡停駐時(shí)的后軸車輪的附著力為
(3-14)
同樣可求出汽車下坡時(shí)的后軸車輪的附著力為
(3-15)
根據(jù)后軸車輪附著力與后軸車輪駐車制動(dòng)的制動(dòng)力相等的條件可求的汽車在上坡路和下坡路上停駐時(shí)的坡度極限傾角,,即由
(3-16)
求得汽車在上坡時(shí)可能停駐的極限上坡傾角為
o
汽車在下坡時(shí)可能停駐的極限下坡傾角為
o
一般要求各類汽車的最大停駐坡度不應(yīng)小于16o~20o。
駐車制動(dòng)器的設(shè)計(jì)中,在安裝制動(dòng)器的空間、制動(dòng)驅(qū)動(dòng)力源等條件允許的范圍內(nèi),應(yīng)力求后橋上駐車制動(dòng)力矩接近于所確定的極限值,并保證小坡路上能停駐的坡度不小于法規(guī)的規(guī)定值。
第四章 制動(dòng)器主要零件的結(jié)構(gòu)設(shè)計(jì)
§4.1 制動(dòng)盤
制動(dòng)盤的結(jié)構(gòu)形狀有平板形和禮帽形兩種。后一種的圓柱部分長(zhǎng)度取決于不支持村。為了改善冷卻,有的鉗盤式制動(dòng)器的制動(dòng)盤鑄成中間有徑向通風(fēng)槽的雙層盤,可大大增加散熱面積,但盤的整體厚度較大。
制動(dòng)盤工作表面的加工精度應(yīng)達(dá)到下述要求:平面度公差為0.012mm,表面粗糙度值為0.7~1.3μm,兩摩擦表面的平行度公差不應(yīng)大于0.05mm,制動(dòng)盤的端面圓跳動(dòng)公差不應(yīng)大于0.03mm。通常制動(dòng)盤采用摩擦性能良好的珠光體灰鑄鐵制造。為保證足夠的強(qiáng)度和耐磨性能,其牌號(hào)不應(yīng)低于HT250。本設(shè)計(jì)采用的為摩托車制動(dòng)盤,參照材料選用40Cr。
一、制動(dòng)盤直徑
本次設(shè)計(jì),所選輪輞直徑為13英寸,由汽車設(shè)計(jì)手冊(cè)得制動(dòng)盤直徑通常為選擇輪輞直徑的70%~79%,即231.14mm~260.858mm,根據(jù)實(shí)際情況,本設(shè)計(jì)選擇制動(dòng)盤直徑mm。
二、制動(dòng)盤厚度
對(duì)制動(dòng)盤質(zhì)量和工作溫度有影響,為使質(zhì)量小些,制動(dòng)盤厚度不宜過(guò)大;為了減少溫升,制動(dòng)盤厚度不宜過(guò)小,本設(shè)計(jì)選擇mm。
§4.2 制動(dòng)鉗
制動(dòng)鉗由可鍛灰鑄鐵KTH370-12或球墨鑄鐵QT400-18制造,也有用輕合金制造的,可做成整體的(圖4-1),也可做成兩半并由螺栓連接。其外緣留有開口,以便不必拆下制動(dòng)鉗便可檢查或更換制動(dòng)塊。制動(dòng)鉗體應(yīng)有高的強(qiáng)度和剛度。一般多在鉗體中加工出制動(dòng)油缸,也有將單獨(dú)制造的油缸裝嵌入鉗體中的。為了減少傳給制動(dòng)液的熱量,多將杯形活塞的開口端頂靠制動(dòng)塊的背板(圖4-1、圖4-2)。有的活塞的開口端部切成階梯狀,形成兩個(gè)相對(duì)且在同一個(gè)平面內(nèi)的小半圓環(huán)形端面?;钊设T鋁合金或鋼制造。為了提高耐磨損性能,活塞的工作表面金星鍍鉻處理。當(dāng)制動(dòng)鉗體由鋁合金制造時(shí),減少傳給制動(dòng)液的熱量成為必須解決的問(wèn)題。為此,應(yīng)減小活塞與制動(dòng)塊背板的接觸面積,有時(shí)也可采用非金屬活塞。
圖4-1 固定鉗式盤式制動(dòng)器的結(jié)構(gòu)圖[4]
1—盤;2—制動(dòng)鉗體;3—油缸及活塞;4—摩擦襯塊;5—制動(dòng)塊定位銷
圖4-2 浮動(dòng)鉗式盤式制動(dòng)器的結(jié)構(gòu)總圖[4]
1—制動(dòng)塊;2—制動(dòng)盤;3—活塞;4—制動(dòng)鉗體
§4.3 制動(dòng)塊
制動(dòng)塊由背板和摩擦襯塊構(gòu)成,兩者直接壓嵌在一起。襯塊多為扇面形,也有矩形、正方形和長(zhǎng)圓形的。活塞應(yīng)能壓住盡可能多的制動(dòng)塊面積,以免襯塊發(fā)生卷角而引起尖叫聲。制動(dòng)塊背板由鋼板制成。賽車中不需要安裝報(bào)警裝置。
§4.4 摩擦材料
摩擦襯塊的材料應(yīng)滿足如下要求:
1、具有一定的穩(wěn)定的摩擦因數(shù);
2、具有良好的耐磨性;
3、要有盡可能小的壓縮率和膨脹率;
4、制動(dòng)時(shí)不易產(chǎn)生噪聲,對(duì)環(huán)境無(wú)污染;
5、應(yīng)采用對(duì)人體無(wú)害的摩擦材料;
6、有較高的耐擠壓強(qiáng)度和沖擊強(qiáng)度,以及足夠的抗剪切能力;
7、應(yīng)將摩擦襯塊的熱傳導(dǎo)率應(yīng)控制在一定范圍。
由金屬纖維、粘結(jié)劑和摩擦性能調(diào)節(jié)劑組成的半金屬摩阻材料,具有較高的耐熱性和耐磨性,特別是因?yàn)闆]有石棉粉塵的公害,近來(lái)得到廣泛的應(yīng)用。
粉末冶金無(wú)機(jī)質(zhì)金屬摩阻材料是以銅粉或鐵粉為主要成分(占質(zhì)量的60%~80%),加上石墨、陶瓷粉等非金屬粉末作為摩擦系數(shù)調(diào)整劑,用粉末冶金法制成。其抗熱衰退性和抗水衰退性能好,但造價(jià)高,適用于高性能轎車和行駛條件惡劣的貨車等制動(dòng)器負(fù)荷重的汽車。
本設(shè)計(jì)采用半金屬摩阻材料。
§4.5 制動(dòng)輪缸
是液壓制動(dòng)系采用的活塞式制動(dòng)蹄張開機(jī)構(gòu),其結(jié)構(gòu)簡(jiǎn)單,在車輪制動(dòng)器中布置方便。輪缸的缸體由灰鑄鐵HT250制造。其缸筒為通孔,需鏜磨?;钊射X合金制造。多數(shù)制動(dòng)輪缸有兩個(gè)等直徑活塞。
§4.6 制動(dòng)器間隙的調(diào)整方法及相應(yīng)機(jī)構(gòu)
為了保證制動(dòng)盤在不制動(dòng)時(shí)能自由轉(zhuǎn)動(dòng),制動(dòng)盤與制動(dòng)襯塊之間,必須保持一定的間隙。此間隙量應(yīng)盡可能小,因?yàn)橹苿?dòng)系的許多工作性能受次間隙影響而變化。使用中因磨損會(huì)增大此間隙,過(guò)分大的間隙會(huì)帶來(lái)許多不良的后果:制動(dòng)器產(chǎn)生制動(dòng)作用的時(shí)間增長(zhǎng);各制動(dòng)器因磨損不同,間隙不一樣大,結(jié)果導(dǎo)致各制動(dòng)器產(chǎn)生制動(dòng)作用的時(shí)間不同,即同步制動(dòng)性能變壞;增加了壓縮空氣或制動(dòng)液的消耗量,并使制動(dòng)踏板或手柄行程增大。為保證制動(dòng)盤和制動(dòng)襯塊之間在使用期間始終有初設(shè)定的間隙量,要求采用間隙自動(dòng)調(diào)整裝置。
圖4-3 盤式制動(dòng)器的活塞密封圈[4]
a)制動(dòng)狀態(tài) b)不制動(dòng)狀態(tài)
1-活塞 2-制動(dòng)鉗 3-密封圈
盤式制動(dòng)器使用最簡(jiǎn)單的間隙自調(diào)方式,是利用制動(dòng)鉗中的橡膠密封圈的極限彈性變形量,來(lái)保持制動(dòng)時(shí)為消除設(shè)定間隙所需的活塞設(shè)定行程Δ(圖4-3)。當(dāng)襯塊磨損而導(dǎo)致所需的活塞行程大于Δ時(shí),活塞可在液壓作用下克服密封圈的摩擦力,繼續(xù)前移到實(shí)現(xiàn)完全制動(dòng)為止。活塞與密封圈之間這一不可恢復(fù)的相對(duì)位移便補(bǔ)償了過(guò)量間隙。
若盤式制動(dòng)器的設(shè)定間隙較大,用密封圈便不可靠,而應(yīng)采用專門的間隙調(diào)整裝置。圖4-4所示為波舍爾(Porshe)乘用車的制動(dòng)器間隙自調(diào)裝置。
圖4-4 盤式制動(dòng)器的間隙自調(diào)裝置[4]
1-活塞2-制動(dòng)盤3-擋圈 4-彈簧罩5-摩擦環(huán)片6-摩擦銷7-隔環(huán)8-壓縮彈簧9-隔套
第五章 制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的結(jié)構(gòu)型式選擇及設(shè)計(jì)計(jì)算
§5.1 制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的結(jié)構(gòu)型式選擇
制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)將來(lái)自駕駛員或其他力源的力傳給制動(dòng)器,使之產(chǎn)生制動(dòng)力矩。根據(jù)制動(dòng)力源的不同,制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)一般可分為簡(jiǎn)單制動(dòng)、動(dòng)力制動(dòng)和伺服制動(dòng)三大類。
一、簡(jiǎn)單制動(dòng)系
簡(jiǎn)單制動(dòng)單靠駕駛員施加的踏板力或手柄力作為制動(dòng)力源,亦稱人力制動(dòng)。其中,又有機(jī)械式和液壓式兩種。機(jī)械式完全靠桿系傳力,由于機(jī)械效率低,傳動(dòng)比小,潤(rùn)滑點(diǎn)多,且難以保證前、后軸制動(dòng)力的正確比例和左、右輪制動(dòng)力的均衡,所以在汽車的行車制動(dòng)裝置中已被淘汰。但因其結(jié)構(gòu)簡(jiǎn)單,成本低,工作可靠(故障少),還廣泛地應(yīng)用于中、小型汽車的行車制動(dòng)裝置中。
液壓式簡(jiǎn)單制動(dòng)(通常簡(jiǎn)稱為液壓制動(dòng)系)用于行車制動(dòng)裝置。液壓制動(dòng)的優(yōu)點(diǎn)是:作用滯后時(shí)間短(0.1~0.3s),工作壓力高(可達(dá)10~12MPa),因輪缸尺寸小,可以安裝在制動(dòng)器內(nèi)部,直接作為制動(dòng)蹄張開機(jī)構(gòu)(或制動(dòng)塊壓緊機(jī)構(gòu)),而不需要制動(dòng)臂等傳動(dòng)件,使之結(jié)構(gòu)簡(jiǎn)單、質(zhì)量??;機(jī)械效率較高(液壓系統(tǒng)有自潤(rùn)滑作用)。液壓制動(dòng)的主要缺點(diǎn)是:過(guò)度受熱后,部分制動(dòng)液汽化,在管路中形成氣泡,即產(chǎn)生所謂“氣阻”,嚴(yán)重影響液壓傳輸,使制動(dòng)效能降低,甚至完全失效,液壓制動(dòng)曾被廣泛應(yīng)用在乘用車和總質(zhì)量不大的商用車上。
二、動(dòng)力制動(dòng)系
動(dòng)力制動(dòng)即利用由發(fā)動(dòng)機(jī)的動(dòng)力轉(zhuǎn)化而成,并表現(xiàn)為氣壓或液壓形式的勢(shì)能作為汽車制動(dòng)的全部力源。駕駛員施加于踏板或手柄上的力,僅用回路中控制元件的操縱。因此,簡(jiǎn)單制動(dòng)中的踏板力和踏板行程之間的反比例關(guān)系,在動(dòng)力制動(dòng)中便不復(fù)存在,從而可使踏板力較小,同時(shí)又有適當(dāng)?shù)奶ぐ逍谐獭?
氣壓制動(dòng)是應(yīng)用最多的動(dòng)力制動(dòng)之一。其主要優(yōu)點(diǎn)是:操縱輕便,工作可靠,不易出故障,維修保養(yǎng)方便;此外,其氣源除供制動(dòng)外,還可用于其他裝置使用。其主要缺點(diǎn)是:必須有空氣壓縮機(jī)、儲(chǔ)氣筒、制動(dòng)閥等裝置,使結(jié)構(gòu)復(fù)雜、笨重、成本高;管路中壓力的建立和撤出都較慢,即作用滯后時(shí)間較長(zhǎng)(0.3~0.9s),因而增加了空駛距離和停車距離,為此,在制動(dòng)閥到制動(dòng)氣室和儲(chǔ)氣筒的距離過(guò)遠(yuǎn)的的情況下,有必要加設(shè)啟動(dòng)的第二級(jí)元件—繼動(dòng)閥以及快放閥;管路工作壓力低,一般為0.5~0.7MPa,因而制動(dòng)氣室的直徑必須設(shè)計(jì)的大些。由于主、掛車的摘和掛都很方便,所以汽車列車也多用氣壓制動(dòng)。
用氣壓系統(tǒng)作為普通的液壓制動(dòng)系統(tǒng)主缸的驅(qū)動(dòng)力源而構(gòu)成的氣頂液制動(dòng),也是動(dòng)力制動(dòng)。它兼有液壓制動(dòng)和氣壓制動(dòng)的主要優(yōu)點(diǎn);因氣壓系統(tǒng)的管路短,作用滯后時(shí)間也較短。但因結(jié)構(gòu)復(fù)雜,質(zhì)量大,成本高,所以主要用在總質(zhì)量較大的商用車上。
全液壓動(dòng)力制動(dòng),用發(fā)動(dòng)機(jī)驅(qū)動(dòng)油泵產(chǎn)生的液壓作為制動(dòng)力源,有閉式(常壓式)與開式(常流式)兩種。
開式(常流式)系統(tǒng)在不制動(dòng)時(shí),制動(dòng)液在無(wú)負(fù)荷狀況下由油泵經(jīng)制動(dòng)閥到儲(chǔ)液罐不斷地循環(huán)流動(dòng);而在制動(dòng)時(shí),則借助于閥的節(jié)流而產(chǎn)生所需的液壓進(jìn)入輪缸。
閉式(常壓式)回路因平時(shí)保持著高液壓,故又稱常壓式。它對(duì)制動(dòng)操縱的反應(yīng)比開式的快,但對(duì)回路的密封要求較高。當(dāng)油泵出故障時(shí),開式的將立即補(bǔ)氣之動(dòng)作用,而閉式的還有可能利用回路中的蓄能器的液壓繼續(xù)進(jìn)行若干次制動(dòng)。故目前汽車用的全液壓動(dòng)力制動(dòng)系多用閉式(常壓式)的。
全液壓動(dòng)力制動(dòng)系除具有一般液壓制動(dòng)系統(tǒng)的有點(diǎn)外,還具有操縱輕便,制動(dòng)反應(yīng)快,制動(dòng)能力強(qiáng),受氣阻影響較小,易于采用制動(dòng)力調(diào)節(jié)裝置和防滑移裝置,及可與動(dòng)力轉(zhuǎn)向,液壓懸架,舉升機(jī)構(gòu)及其他輔助設(shè)備共用液壓泵和儲(chǔ)油罐等優(yōu)點(diǎn)。但其機(jī)構(gòu)復(fù)雜,精密件多,對(duì)系統(tǒng)的封閉性要求也較高,故并未得到廣泛應(yīng)用。
各種形式的動(dòng)力制動(dòng)在動(dòng)力系統(tǒng)失效時(shí),制動(dòng)作用即全部喪失。
三、伺服制動(dòng)系
伺服制動(dòng)的制動(dòng)能源是人力和發(fā)動(dòng)機(jī)并用。正常情況下,其輸出工作壓力主要由動(dòng)力伺服系統(tǒng)產(chǎn)生;在動(dòng)力伺服系統(tǒng)失效時(shí),還可以全靠人力驅(qū)動(dòng)液壓系統(tǒng),以產(chǎn)生一定程度的制動(dòng)力。因此,從排量1.6L以上的乘用車到各種商用車,都廣泛采用伺服制動(dòng)。
按伺服力源的不同,伺服制動(dòng)有真空伺服制動(dòng)、空氣伺服制動(dòng)和液壓伺服制動(dòng)三類。
真空伺服制動(dòng)系是利用發(fā)動(dòng)機(jī)進(jìn)氣管中節(jié)氣門后的真空度(負(fù)壓,一般可達(dá)0.05~0.07MPa)作動(dòng)力源,一般的柴油車若采用真空伺服制動(dòng)系時(shí),則需有專門的真空源—由發(fā)動(dòng)機(jī)驅(qū)動(dòng)的真空泵或噴吸器構(gòu)成。氣壓伺服制動(dòng)系是由發(fā)動(dòng)機(jī)驅(qū)動(dòng)的空氣壓縮機(jī)提供壓縮空氣作為動(dòng)力源,伺服氣壓一般可達(dá)0.6~0.7MPa。故在輸出力相等時(shí),氣壓伺服氣室直徑比真空伺服氣室直徑小得多。且在雙回路制動(dòng)系中,如果伺服系統(tǒng)也是分立式的,則氣壓伺服比真空伺服更適宜,因此后者難于使各回路真空度均衡。但氣壓伺服系統(tǒng)的其他組成部分卻較真空伺服系統(tǒng)復(fù)雜得多。真空私服制動(dòng)多用于總質(zhì)量在1.1t~1.35t以上的乘用車和載質(zhì)量在6t以下的商用車,空氣伺服制動(dòng)則廣泛用于載質(zhì)量為6~12t的商用車,以及少數(shù)幾種排量在4.0L以上的乘用車上。
本設(shè)計(jì)中采用液壓式的動(dòng)力制動(dòng)系統(tǒng)來(lái)作為制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的方案。
§5.2 制動(dòng)管路的分路系統(tǒng)
根據(jù)賽事要求,賽車制動(dòng)系統(tǒng)采用液壓制動(dòng)。
為了提高制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的工作可靠性,保證行車安全,驅(qū)動(dòng)機(jī)構(gòu)采用了兩套獨(dú)立的系統(tǒng),即應(yīng)是雙回路系統(tǒng)。雙軸汽車的液壓式制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的雙回路系統(tǒng)有多種形式,其中常見的有五種,分別是II、X、HI、LL、HH型。
圖5-1 液壓回路系統(tǒng)的形式[4]
1、一軸對(duì)一軸(II)型,如圖a所示,前軸制動(dòng)器與后橋制動(dòng)器各用一個(gè)回路(“II型”是其形象的簡(jiǎn)稱,下同)。
2、交叉(X)型,如圖b所示,前軸的一側(cè)車輪制動(dòng)器與后橋的對(duì)側(cè)車輪制動(dòng)器同屬一個(gè)回路。
3、一軸對(duì)半半軸(HI)型,如圖c所示,兩側(cè)前軸制動(dòng)器的半數(shù)輪缸和全部后制動(dòng)器的輪缸屬于一個(gè)回路,其余的前輪缸則屬于另一個(gè)回路。
4、半軸一輪對(duì)半軸一輪(LL)型,如圖d所示,兩個(gè)回路分別對(duì)兩側(cè)前輪制動(dòng)器的半數(shù)輪缸和一個(gè)后輪制動(dòng)器起作用。
5、雙半軸對(duì)雙半軸(HH)型,如圖e所示,每個(gè)回路均只對(duì)每個(gè)前、后制動(dòng)器的半數(shù)輪缸起作用。
II型管路的布置較為簡(jiǎn)單,可與傳統(tǒng)的單輪缸盤式制動(dòng)器配合使用,成本較低,目前在各類汽車特別是商用車上用得最廣泛對(duì)于這種形式,若后制動(dòng)回路失效,則一旦前輪抱死即極易喪失轉(zhuǎn)彎制動(dòng)能力。
X型的結(jié)構(gòu)也很簡(jiǎn)單,一回路失效時(shí)仍能保持50%的制動(dòng)效能,并且制動(dòng)力的分配系數(shù)和同步附著系數(shù)沒有變化,保證了制動(dòng)時(shí)與整車負(fù)荷的適應(yīng)性。此時(shí)前,后各有一側(cè)車輪有制動(dòng)作用,使制動(dòng)力不對(duì)稱,導(dǎo)致前輪將朝制動(dòng)起作用車輪的一側(cè)繞主銷轉(zhuǎn)動(dòng),使汽車失去方向穩(wěn)定性。因此,采用這種分路方案的汽車,其主銷偏移距應(yīng)取負(fù)值(至20mm),這樣,不平衡的制動(dòng)力使車輪反向轉(zhuǎn)動(dòng),改善了汽車的方向穩(wěn)定性,多用于中、小型轎車。
HI、LL、HH型的結(jié)構(gòu)均較II型、X型復(fù)雜。LL型和HH型在任意回路失效時(shí),前、后制動(dòng)力比值均與正常情況相同,剩余總制動(dòng)力可達(dá)正常值的50%左右。HI型單用一軸半回路時(shí)剩余制動(dòng)力較大,但此時(shí)與LL型一樣,緊急制動(dòng)情況下后輪很容易先抱死。
綜合上述情況,本設(shè)計(jì)中選用II型回路系統(tǒng)。
§5.3 液壓制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)的設(shè)計(jì)計(jì)算
§5.3.1 制動(dòng)輪缸直徑與工作容積
制動(dòng)輪缸對(duì)制動(dòng)塊的作用力P與輪缸直徑及制動(dòng)輪缸中的液壓之間有如下關(guān)系式:
(5-1)
式中,——考慮制動(dòng)力調(diào)節(jié)裝置作用下的輪缸或管路液壓,一般=8MPa~12MPa,但根據(jù)賽車具體情況取=6MPa。
輪缸直徑應(yīng)在GB 7524—87標(biāo)準(zhǔn)規(guī)定的尺寸系列里選取,輪缸直徑的尺寸系列為
14.5,16,17.5,19,20.5,22,﹙22.22﹚,﹙23.81﹚,24,﹙25.40﹚,26,28,﹙28.58﹚,30,32,35,38,42,46,50,56mm
經(jīng)過(guò)查取取mm。
一個(gè)輪缸的工作容積
(5-2)
式中,——一個(gè)輪缸活塞的直徑;
——輪缸的活塞數(shù)目;
輪缸活塞在完全制動(dòng)時(shí)的行程:
(5-3)
其中,是消除制動(dòng)塊與制動(dòng)盤間的間隙所需的輪缸活塞行程,取。
由于摩擦襯塊變形而引起的輪缸活塞行程,取。
,是對(duì)于鼓式制動(dòng)器而言的,這里不予考慮。
則
mm
則單個(gè)輪缸的工作容積,n=1
mm3
全部輪缸的工作容積,其中:——輪缸的數(shù)目,
則
mm3
§5.3.2 制動(dòng)主缸直徑與工作容積
制動(dòng)主缸的直徑應(yīng)符合GB 7524—87標(biāo)準(zhǔn)規(guī)定的尺寸系列,主缸直徑的尺寸系列為
14.5,16,17.5,19,20.5,22,﹙22.22﹚,﹙23.81﹚,24,﹙25.40﹚,26,28,﹙28.58﹚,30,32,35,38,42,46mm。
制動(dòng)主缸應(yīng)有的工作容積
(5-4)
式中,——制動(dòng)軟管在液壓下變形而引起的容積增量。
在設(shè)計(jì)中考慮軟管變形,轎車制動(dòng)主缸的工作容積可取為。
則
mm3
主缸活塞直徑和活塞行程可由下式確定:
(5-5)
一般
;
取主缸活塞行程:
則
mm3
得 mm
取 mm
所以 mm
§5.3.3 制動(dòng)踏板力與踏板行程
制動(dòng)踏板力可用下式驗(yàn)算:
(5-6)
式中,——制動(dòng)主缸活塞直徑;
——制動(dòng)管路液壓;
——制動(dòng)踏板機(jī)構(gòu)傳動(dòng)比,;
,——見下圖5-1;
圖5-1 液壓制動(dòng)驅(qū)動(dòng)機(jī)構(gòu)計(jì)算用簡(jiǎn)圖
式中,——制動(dòng)踏板機(jī)構(gòu)及制動(dòng)主缸的機(jī)械效率,可取--;在本設(shè)計(jì)中取。
將踏板的傳動(dòng)比定在6.5,這樣從人機(jī)工程學(xué)的角度可以實(shí)現(xiàn)最優(yōu)化的設(shè)計(jì),車手對(duì)制動(dòng)器的操控性最佳,取mm。
則
mm
制動(dòng)踏板力為
N
制動(dòng)踏板的工作行程為
(5-7)
式中,——主缸中推桿與活塞間的間隙;
——主缸活塞空行程。
由于本設(shè)計(jì)是設(shè)計(jì)賽車,賽車本身要求制動(dòng)要靈敏,所以,均不宜過(guò)大。??;
則
mm
§5.3.4 制動(dòng)主缸的形式
圖5-2 串聯(lián)雙腔制動(dòng)主缸內(nèi)部結(jié)構(gòu)[6]
現(xiàn)代汽車制動(dòng)主缸的形式有單腔和串聯(lián)雙腔制動(dòng)主缸,根據(jù)大賽要求,每個(gè)液壓回路必須有其專屬的儲(chǔ)油罐,因此初步確定采用串聯(lián)雙腔形式的制動(dòng)主缸,但考慮賽車的總體布局和空間問(wèn)題,不排除采用并聯(lián)單腔制動(dòng)主缸的可能。
制動(dòng)主缸由灰鑄鐵制造,也可以采用低碳鋼冷擠成形;活塞可由灰鑄鐵、鋁合金或中碳鋼制造。
第六章 行走系統(tǒng)的設(shè)計(jì)
§6.1 汽車行駛系統(tǒng)概述
汽車作為一種地面交通工具,其行駛系統(tǒng)的基本組成和結(jié)構(gòu)形式,在很大程度上取決于汽車經(jīng)常行駛路面的性質(zhì)。絕大多數(shù)汽車還是經(jīng)常行駛在比較堅(jiān)實(shí)的路面上的,其行使系統(tǒng)中直接與路面接觸的路面是車輪,因而稱為輪式汽車行駛系統(tǒng),這樣的汽車便是輪式汽車[17]。
輪式汽車行駛系統(tǒng)一般由車架、車橋、車輪和懸架組成,如下圖所示就是汽車行駛系總成布置。
圖6-1 汽車行駛系的組成[4]
1-前懸架 2-車架 3-后懸架 4-驅(qū)動(dòng)橋 5-后輪 6-前輪 7-從動(dòng)橋
本文對(duì)賽車行駛系統(tǒng)的研究主要是輪胎及其配套部分,即輪轂、立柱和制動(dòng)部分。
圖6-2 賽車行駛系統(tǒng)的組成
§6.1.1 輪胎
鑒于Formula SAE 的賽道特性,賽車在比賽中的速度相對(duì)較低,行使時(shí)間也比較短。而且參賽賽車的車重也比較輕。由于以上這些原因,希望輪胎能夠在盡量短的時(shí)間內(nèi)達(dá)到其工作溫度,以盡快實(shí)現(xiàn)最大抓地力。一般來(lái)說(shuō)只有專業(yè)的賽車用熱融胎符合這方面的要求。本次設(shè)計(jì)采用美國(guó)Hoosier公司的44150賽道用競(jìng)賽級(jí)雨胎。
§6.1.2 輪輞
參賽賽車的輪輞選擇了鋁合金三片式輪轂。三片式輪輞由三個(gè)部分組成,外側(cè)輪圈、內(nèi)側(cè)輪圈和輻板。其結(jié)構(gòu)如圖6-3所示。
圖6-3 三片式輪輞結(jié)構(gòu)
選擇三片式輪輞的好處在于可以根據(jù)需要選擇輪輞的偏置值。這里的偏置值的定義為輪輞的安裝面到輪胎中心截面的距離,向內(nèi)為正,向外為副。為了充分利用輪輞內(nèi)的空間,參賽賽車選擇了-46mm 的輪輞偏置。
輪輞的外側(cè)輪圈、內(nèi)側(cè)輪圈為自行設(shè)計(jì)制造的,材料為T6061-T6鋁合金,直徑為13英寸,寬度為7英寸,符合Hoosier44150輪胎對(duì)輪輞的需要。輻板也是自行設(shè)計(jì)制造的,材料為T6061-T6鋁合金。輪輞為輻板式,采用鑄造工藝加工而成,目的是減輕車輪的重量和利于制動(dòng)轂的散熱。中心連接孔的數(shù)量為4個(gè),連接孔邊緣倒出和輪輞固定螺帽帽檐相同的錐度,外側(cè)的16個(gè)安裝孔攻有M6內(nèi)螺紋。裝配后的輪輞如圖6-4所示。
圖6-4 輪輞
§6.1.3 輪轂
賽車的輪轂通常是指固定輪輞和制動(dòng)系統(tǒng)相關(guān)組建的輪胎中心的心軸。
圖6-5 賽車后輪輪轂
賽車對(duì)操縱靈活性、行駛安全性的要求要比一般的汽車高很多,因此輪轂的設(shè)計(jì)原則就是在保證安全的基礎(chǔ)上,盡可能的使結(jié)構(gòu)簡(jiǎn)單,節(jié)省整車整備質(zhì)量。由于本賽車采用的是發(fā)動(dòng)機(jī)后置后輪驅(qū)動(dòng)的方式,后輪轂設(shè)計(jì)時(shí)必須要考慮與傳動(dòng)軸的配合,為此,本設(shè)計(jì)將輪轂中心掏空,并按照傳動(dòng)軸的外花鍵類型與尺寸,設(shè)計(jì)出相配套的內(nèi)花鍵,同時(shí),傳動(dòng)軸與輪轂配合的末端設(shè)計(jì)一個(gè)特制的螺母進(jìn)行防松固定。
根據(jù)第二代賽車的參賽經(jīng)歷,前輪輪轂軸承內(nèi)圈卡不住,轉(zhuǎn)向晃動(dòng)問(wèn)題嚴(yán)重,這代賽車設(shè)計(jì)時(shí),前輪輪轂軸承的設(shè)計(jì)采用了開口螺母壓緊軸承內(nèi)圈的方法。另外,考慮到輪胎的快拆,之前賽車的輪輞用四個(gè)圓柱銷定位一個(gè)大螺母鎖緊,但這種方式結(jié)構(gòu)設(shè)計(jì)繁瑣,益處不大,本次設(shè)計(jì)將4個(gè)輪輞螺栓的一端均勻固定在輪轂上,使的輪轂結(jié)構(gòu)簡(jiǎn)單,質(zhì)量減輕,輪輞安裝方便。
圖6-6 賽車前輪輪轂
§6.1.4 立柱
賽車上的立柱指的是與賽車懸架相連接,承載汽車主要重量的模塊。立柱上有兩個(gè)用來(lái)連接球頭軸承的定位孔,這兩個(gè)定位孔的連接線就是主銷,是賽車上轉(zhuǎn)向輪轉(zhuǎn)向時(shí)的回轉(zhuǎn)中心 。主銷通常意義上有兩個(gè)重要的角度,分為主銷內(nèi)傾角和主銷外傾角。主銷內(nèi)傾角,是將主銷(即轉(zhuǎn)向軸線)的上端向內(nèi)傾斜的角度。從汽車的前面看去,主銷軸線
收藏