秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 平面解析幾何 10.9.3 圓錐曲線的范圍問題練習(xí) 理 北師大版

上傳人:水****8 文檔編號(hào):95828207 上傳時(shí)間:2022-05-24 格式:DOC 頁數(shù):15 大?。?.78MB
收藏 版權(quán)申訴 舉報(bào) 下載
2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 平面解析幾何 10.9.3 圓錐曲線的范圍問題練習(xí) 理 北師大版_第1頁
第1頁 / 共15頁
2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 平面解析幾何 10.9.3 圓錐曲線的范圍問題練習(xí) 理 北師大版_第2頁
第2頁 / 共15頁
2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 平面解析幾何 10.9.3 圓錐曲線的范圍問題練習(xí) 理 北師大版_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 平面解析幾何 10.9.3 圓錐曲線的范圍問題練習(xí) 理 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 平面解析幾何 10.9.3 圓錐曲線的范圍問題練習(xí) 理 北師大版(15頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 10.9.3 圓錐曲線的范圍問題 核心考點(diǎn)·精準(zhǔn)研析 考點(diǎn)一 幾何法求范圍? 1.直線l1:mx-y+m=0與直線l2:x+my-1=0的交點(diǎn)為Q,橢圓+y2=1的焦點(diǎn)為F1,F2,那么|QF1|+|QF2|的取值范圍是 (  ) A.[2,+∞) B.[2,+∞) C.[2,4] D.[2,4] 2.橢圓E:+=1(a>b>0)的右焦點(diǎn)為 F,短軸的一個(gè)端點(diǎn)為M,直線l:3x-4y=0交橢圓E于 A,B兩點(diǎn).假設(shè)|AF|+|BF|=4,點(diǎn)M到直線l的距離不小于,那么橢圓E的離心率的取值范圍是 (  ) A. 0, B.0, C. ,1 D.,1 3.過雙曲線-=1

2、(a>0,b>0)的右頂點(diǎn)且斜率為2的直線,與該雙曲線的右支交于兩點(diǎn),那么此雙曲線離心率的取值范圍為________________.? 【解析】1.選D.橢圓+y2=1的焦點(diǎn)為:F1(-,0), F2(,0),由l1與l2方程可知l1⊥l2, 直線l1:mx-y+m=0與直線l2:x+my-1=0的交點(diǎn)為Q,且兩條直線分別經(jīng)過定點(diǎn)(-1,0),(1,0), 所以它們的交點(diǎn)Q滿足:x2+y2=1(x≠-1), 當(dāng)Q與(1,0)重合時(shí),|QF1|+|QF2|取最小值為 |F1F2|=2, 當(dāng)Q與短軸端點(diǎn)重合時(shí),|QF1|+|QF2|取最大值為2a=4,所以|QF1|+|QF2|的取

3、值范圍是[2,4]. 2.選A.不妨設(shè)M(0,b),點(diǎn)M到直線l的距離d==≥,即b≥1, 所以e2===1-≤1-=, 所以00,

4、b>0)的右頂點(diǎn)且斜率為2的直線,與該雙曲線的右支交于兩點(diǎn),可得<2.所以e==<=,因?yàn)閑>1,所以1

5、運(yùn)算、邏輯推理以及函數(shù)與方程、轉(zhuǎn)化與化歸的數(shù)學(xué)思想等. 2.怎么考:以直線和圓錐曲線的位置關(guān)系為背景,考查參數(shù)取值范圍或目標(biāo)代數(shù)式的取值范圍問題. 3.新趨勢:范圍問題與不等式、函數(shù)值域等問題相結(jié)合. 學(xué) 霸 好 方 法 1.解決圓錐曲線中的取值范圍問題的5種常用解法 (1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍. (2)利用參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個(gè)參數(shù)之間的等量關(guān)系. (3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍. (4)利用的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍. (5)利用求函數(shù)的值域

6、的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍. 2.交匯問題: 與不等式、函數(shù)問題交匯時(shí),要注意參數(shù)取值范圍的限制對解不等式、求函數(shù)值域的影響. 構(gòu)造不等式求范圍 【典例】(2021·宜昌模擬)在直角坐標(biāo)系xOy中,橢圓C的方程為+=1(a>b>0),左右焦點(diǎn)分別為F1,F2,R為短軸的一個(gè)端點(diǎn),且△RF1F2的面積為.設(shè)過原點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),P為橢圓C上異于A,B的一點(diǎn),且直線PA,PB的斜率都存在,kPAkPB=-. (1)求a,b的值. (2)設(shè)Q為橢圓C上位于x軸上方的一點(diǎn),且QF1⊥x軸,M,N為橢圓C上不同于Q的兩點(diǎn),且∠MQF1=

7、∠NQF1,設(shè)直線MN與y軸交于點(diǎn)D(0,d),求d的取值范圍. 【解題導(dǎo)思】 序號(hào) 題目拆解 (1) 求參數(shù)a,b 點(diǎn)差法轉(zhuǎn)化kPAkPB=-,結(jié)合△RF1F2的面積列出方程組求解 (2) ①設(shè)直線QM的方程 將兩角相等轉(zhuǎn)化為兩直線QM,QN斜率之間的關(guān)系 ②求直線MN的斜率 將直線方程與橢圓方程聯(lián)立,分別求出M、N點(diǎn)的橫坐標(biāo),利用兩點(diǎn)坐標(biāo)表示出直線MN的斜率. ③求d所滿足的不等式 將直線MN的方程與橢圓方程聯(lián)立,由位置關(guān)系列出不等關(guān)系 ④解不等式求范圍 解所得不等式即可求得d的取值范圍 【解析】(1)設(shè)A(x1,y1),P(x2,y2),那么B(-x1,-

8、y1), 進(jìn)一步得,+=1,+=1, 兩個(gè)等式相減得,+=0, 所以·=-, 所以kPA·kPB=-,因?yàn)閗PA·kPB=-,所以-=-,即=,設(shè)b=t,a=2t(t>0), 因?yàn)閍2=b2+c2,所以c=t, 由△RF1F2的面積為得,=,即bc=,即t2=,t=1, 所以a=2,b=. (2)設(shè)直線QM的斜率為k, 因?yàn)椤螹QF1=∠NQF1,所以QM,QN關(guān)于直線QF1對稱,所以直線QN的斜率為-k, 算得F1(-1,0),Q, 所以直線QM的方程是y-=k(x+1), 設(shè)M(x3,y3),N(x4,y4) 由 消去y得, (3+4k2)x2+(12+8k)k

9、x+(4k2+12k-3)=0, 所以-1·x3=,所以x3=, 將上式中的k換成-k得,x4=, 所以kMN====-, 所以直線MN的方程是y=-x+d, 代入橢圓方程+=1得,x2-dx+d2-3=0,所以 Δ=(-d)2-4(d2-3)>0,所以-2-×(-1)+d,所以-2b>0)的上頂點(diǎn)和左焦點(diǎn),假設(shè)EF與圓x2+y2=相切于點(diǎn)T,且點(diǎn)T是線段EF靠近點(diǎn)E的三等分點(diǎn). (1)求橢圓C的標(biāo)準(zhǔn)方程. (2)直線l:y=kx+m與

10、橢圓C只有一個(gè)公共點(diǎn)P,且點(diǎn)P在第二象限,過坐標(biāo)原點(diǎn)O且與l垂直的直線l′與圓x2+y2=8相交于A,B兩點(diǎn),求△PAB面積的取值范圍. 【解題導(dǎo)思】 序號(hào) 題目拆解 (1) 求參數(shù)a,b 根據(jù)分別求出a,b的值. (2) ①建立k,m的關(guān)系式 直線方程與橢圓方程聯(lián)立,利用方程只有一解即可建立兩者的關(guān)系式 ②求P到直線l′的距離 求P點(diǎn)坐標(biāo),代入距離公式求解 ③表示△PAB面積 利用三角形面積公式建立目標(biāo)函數(shù) ④求取值范圍 根據(jù)目標(biāo)函數(shù)的結(jié)構(gòu)特征,利用根本不等式求解最值,從而確定其取值范圍 【解析】(1) OT2=ET·TF=a·a=, a2=6,b2=OE2

11、=OT2+ET2=2, 橢圓C的標(biāo)準(zhǔn)方程為+=1. (2)由得, (3k2+1)x2+6kmx+3m2-6=0, 因?yàn)橹本€l:y=kx+m與橢圓C相切于點(diǎn)P, 所以Δ=(6km)2-4(3k2+1)(3m2-6)=12(6k2+2-m2)=0,即m2=6k2+2,解得x=,y=, 即點(diǎn)P的坐標(biāo)為, 因?yàn)辄c(diǎn)P在第二象限,所以k>0,m>0, 所以m=,所以點(diǎn)P的坐標(biāo)為 ,設(shè)直線l′與l垂直交于點(diǎn)Q, 那么|PQ|是點(diǎn)P到直線l′的距離, 設(shè)直線l′的方程為y=-x, 那么|PQ|===, 所以S△PAB=×4×|PQ|=≤==4-4, 當(dāng)且僅當(dāng)3k2=,即k2=時(shí),取得

12、最大值4-4,所以△PAB面積的取值范圍為(0,4-4]. 1.橢圓C:+=1(a>b>0)的焦距為2,且C與y軸交于A(0,-1),B(0,1)兩點(diǎn). (1)求橢圓C的標(biāo)準(zhǔn)方程. (2)設(shè)P點(diǎn)是橢圓C上的一個(gè)動(dòng)點(diǎn)且在y軸的右側(cè),直線PA,PB與直線x=3交于M,N兩點(diǎn).假設(shè)以MN為直徑的圓與x軸交于E,F兩點(diǎn),求P點(diǎn)橫坐標(biāo)的取值范圍. 【解析】(1)由題意可得,b=1,c=,所以a=2, 橢圓C的標(biāo)準(zhǔn)方程為+y2=1. (2)方法一:設(shè)P(x0,y0)(0

13、+1,直線PA與直線x=3的交點(diǎn)為M,直線PB與直線x=3的交點(diǎn)為N,線段MN的中點(diǎn), 所以圓的方程為(x-3)2+=. 令y=0,那么(x-3)2+=, 因?yàn)?=1,所以(x-3)2=-, 因?yàn)檫@個(gè)圓與x軸相交,所以該方程有兩個(gè)不同的實(shí)數(shù)解,那么->0,又00),與橢圓x2+4y2=4聯(lián)立得:(1+4)x2-8k1x=0,xP=,同理設(shè)直線BP的方程為y=k2x+1,可得xP=,由=,可得4k1k2=-1,所以M(3,3k1-1), N(3,3k2+1),MN的中點(diǎn)為,所以以MN為直徑的圓為(x-3)2

14、+=. 當(dāng)y=0時(shí),(x-3)2+=,所以(x-3)2=, 因?yàn)镸N為直徑的圓與x軸交于E,F兩點(diǎn),所以>0, 代入4k1k2=-1得:<0,所以

15、 所以|PQ|≤|PM|+1.設(shè)P(x,y),那么|PM|2=x2+(y-3)2=x2+y2-6y+9.(*) 而+=1,所以x2=4-. 代入(*)中,可得|PM|2=4-+y2-6y+9=--6y+13,y∈[-,].所以|PM=12+6, 即|PM|max=3+,所以|PQ|max=4+. (2)依題意,設(shè)直線l1:y=kx+m. 由 消去y整理得(3+4k2)x2+8mkx+4m2-12=0. 因?yàn)橹本€與橢圓交于不同的兩點(diǎn), 所以Δ=64m2k2-4(3+4k2)(4m2-12)>0,整理得m2<4k2+3.①設(shè)A(x1,y1),B(x2,y2), 那么x1+x2=-,

16、x1x2=. 設(shè)點(diǎn)E的坐標(biāo)為(x0,y0),那么x0=-, 所以y0=kx0+m=-+m=, 所以點(diǎn)E的坐標(biāo)為. 所以直線l2的斜率為k′==. 又直線l1和直線l2垂直,那么·k=-1,所以m=-. 將m=-代入①式,可得<4k2+3.解得k>或k<-. 所以直線l1的斜率的取值范圍為∪. 1.(2021·南昌模擬)橢圓C:+=1(a>b>0)的離心率為,短軸長為2. (1)求橢圓C的標(biāo)準(zhǔn)方程. (2)設(shè)直線l:y=kx+m與橢圓C交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),假設(shè)kOM·kON=,求原點(diǎn)O到直線l的距離的取值范圍. 【解析】(1)由題知e==,2b=2, 又a2

17、=b2+c2,所以b=1,a=2, 所以橢圓C的標(biāo)準(zhǔn)方程為+y2=1. (2)設(shè)M(x1,y1),N(x2,y2),聯(lián)立方程 得(4k2+1)x2+8kmx+4m2-4=0, 依題意,Δ=(8km)2-4(4k2+1)(4m2-4)>0, 化簡得m2<4k2+1,① x1+x2=-,x1x2=, y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2. 假設(shè)kOM·kON=,那么=,即4y1y2=5x1x2, 所以(4k2-5)x1x2+4km(x1+x2)+4m2=0, 所以(4k2-5)·+4km·+4m2=0, 即(4k2-5)(m2-1)-

18、8k2m2+m2(4k2+1)=0, 化簡得m2+k2=②,由①②得0≤m2<,

19、方程.求出直線PF1的方程,聯(lián)立橢圓方程和直線方程后可求Q的坐標(biāo),故可得λ的值. (2)因?yàn)镻,故可用a,b,c,λ表示Q的坐標(biāo),利用它在橢圓上可得λ與a,b,c的關(guān)系,化簡后可得λ與離心率e的關(guān)系,由λ的范圍可得e的范圍. 【解析】(1)因?yàn)镻F2垂直于x軸,且點(diǎn)P的坐標(biāo)為, 所以a2-b2=c2=4,+=1, 解得a2=16,b2=12,所以橢圓的方程為+=1. 所以F1,直線PF1的方程為y=, 將y=代入橢圓C的方程,解得xQ=-, 所以λ====. (2)因?yàn)镻F2⊥x軸,不妨設(shè)P在x軸上方,P, y0>0, 設(shè)Q, 因?yàn)镻在橢圓上,所以+=1, 解得y0=,即P. 因?yàn)镕1,由PQ=λF1Q得,c-x1=λ,-y1=-λy1, 解得x1=-c,y1=-, 所以Q. 因?yàn)辄c(diǎn)Q在橢圓上,所以e2+=1, 即e2+=,所以(λ+2)e2=λ-2,從而e2=. 因?yàn)?≤λ≤5,所以≤e2≤.解得≤e≤, 所以橢圓C的離心率的取值范圍為. - 15 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!