《2020高中物理 第七章 機械能守恒定律 第5節(jié) 探究彈性勢能的表達式優(yōu)練(含解析)新人教版必修2》由會員分享,可在線閱讀,更多相關(guān)《2020高中物理 第七章 機械能守恒定律 第5節(jié) 探究彈性勢能的表達式優(yōu)練(含解析)新人教版必修2(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、探究彈性勢能的表達式
基礎夯實
一、選擇題(1~4題為單選題,5題為多選題)
1.關(guān)于物體的彈性勢能,下面說法中正確的是( C )
A.任何發(fā)生形變的物體都具有彈性勢能
B.拉伸時的彈性勢能一定大于壓縮時的彈性勢能
C.拉伸長度相同時,k越大的彈簧,彈性勢能越大
D.彈簧變長時,它的彈性勢能一定變大
解析:發(fā)生彈性形變或雖然不是彈性形變,但存在一定的恢復形狀的趨勢的情況下,物體才具有彈性勢能,A錯。由Ep=kΔl2知Δl相同時,k大,Ep就大,拉伸與壓縮量Δl相同時,Ep相同,C對B錯。處于壓縮狀的彈簧變長但依然為壓縮狀態(tài)時x變小,Ep減小,D錯。
2.如圖所示,一輕
2、彈簧一端固定于O點,另一端系一重物,將重物從與懸點O在同一水平面且彈簧保持原長的A點無初速地釋放,讓它自由擺下,不計空氣阻力,在重物由A點擺向最低點B的過程中( C )
A.重力做正功,彈力不做功
B.重力做正功,彈力做正功
C.若用與彈簧原長相等的細繩代替彈簧后,重力做正功,彈力不做功
D.若用與彈簧原長相等的細繩代替彈簧后,重力做功不變,彈力不做功
解析:重力做正功,彈簧彈力做負功,選項A、B錯誤,若用等長細繩代替重力做功,彈力不做功,但重力做的功不同,選項C正確,D錯誤。
3.在光滑的水平面上,物體A以較大速度va向前運動,與以較小速度vb向同一方向運動的、連有輕質(zhì)彈簧的
3、物體B發(fā)生相互作用,如圖所示。在相互作用的過程中,當系統(tǒng)的彈性勢能最大時( B )
A.va>vb B.va=vb
C.va
4、能最大
D.第一次到達最低點的瞬間,人的重力勢能為零
解析:在繩子向上的拉力等于重力的位置,人的加速度為零,該位置以上做加速運動,該位置以下做減速運動,故A、B錯;人到最低點時彈性繩形變量最大,則彈性繩的彈性勢能最大,故C正確;重力勢能與零勢能面的選取有關(guān),D錯誤。
5.如圖所示,彈簧的一端固定在墻上,另一端在水平力F作用下在彈性限度內(nèi)緩慢拉伸了x。關(guān)于拉力F、彈性勢能Ep隨伸長量x的變化圖像可能正確的是( AD )
解析:因為是緩慢拉伸,所以拉力始終與彈簧彈力大小相等,由胡克定律F=kx,F(xiàn)-x圖像為傾斜直線,A對,B錯。因為Ep∝x2,所以D對,C錯。
二、非選擇題
6
5、.北京奧運會女子蹦床決賽中,中國小將何雯娜表現(xiàn)突出,以總分37.80分的成績?yōu)橹袊拇碴爦Z得首枚奧運會金牌。在比賽中,如果她受到蹦床對她的彈力的變化規(guī)律如圖所示。
試分析該同學在t4~t5段時間內(nèi)彈性勢能、重力勢能怎樣變化?t5~t6段時間內(nèi)又如何變化?
答案:t4~t5段時間內(nèi)彈性勢能為零、重力勢能先變大再變?。籺5~t6段時間內(nèi)彈性勢能先變大再變小、重力勢能先變小再變大。
解析:t4~t5段時間內(nèi)在空中,不受彈力作用,t5~t6段時間內(nèi)與蹦床接觸,是先下落又上升的過程。
能力提升
一、選擇題(單選題)
1.勁度系數(shù)分別為kA=200 N/m和kB=300 N/m的彈簧
6、A和B連接在一起,拉長后將兩端固定,如圖所示,彈性勢能EpA、EpB的關(guān)系是( B )
A.EpA=EpB B.EpA>EpB
C.EpAEpB,B正確。
2.如圖所示,質(zhì)量相等的兩木塊間連有一彈簧,今用力F緩慢向上提A,直到B恰好離開地面。開始時物體A靜止在彈簧上面,設開始時彈簧彈性勢能為Ep1,B剛要離開地面時,彈簧的彈性勢能為Ep2,則關(guān)于Ep1、Ep2大小關(guān)系及彈性勢能變化量ΔEp,下列判斷中正確
7、的是( A )
A.Ep1=Ep2 B.Ep1>Ep2
C.ΔEp>0 D.ΔEp<0
解析:開始時彈簧形變量為x1,有kx1=mg,物體B離開地面時彈簧形變量為x2,有kx2=mg,由于x1=x2,所以Ep1=Ep2,ΔEp=0,故選項A正確。
3.(2019·四川成都七中高一下學期檢測)在一次演示實驗中,一壓緊的彈簧沿一粗糙水平面射出一小球,測得彈簧壓縮的距離d和小球在粗糙水平面上滾動的距離s如下表所示。由此表可以歸納出小球滾動的距離s跟彈簧壓縮的距離d之間的關(guān)系,并猜測彈簧的彈性勢能Ep跟彈簧壓縮的距離d之間的關(guān)系分別是(選項中k1、k2是常量)( D )
實驗次數(shù)
1
8、
2
3
4
d/cm
0.50
1.00
2.00
4.00
s/cm
4.98
20.02
80.10
319.5
A.s=k1d Ep=k2d B.s=k1d Ep=k2d2
C.s=k1d2 Ep=k2d D.s=k1d2 Ep=k2d2
解析:分析實驗數(shù)據(jù),可看出在誤差允許的范圍內(nèi)=20,即s=k1d2。由生活常識可猜測,彈性勢能越大,小球滾動的距離越遠,Ep∝s,則Ep∝d2,Ep=k2d2。
4.(2019·重慶一中高一下學期檢測)如圖甲所示,一滑塊沿光滑的水平面向左運動,與輕彈簧接觸后將彈簧壓縮到最短,然
9、后反向彈回,彈簧始終處在彈性限度以內(nèi),圖乙為測得的彈簧的彈力與彈簧壓縮量之間的關(guān)系圖像,則彈簧的壓縮量由8 m/s變?yōu)? m/s時,彈簧彈力所做的功以及彈性勢能的改變量分別為( C )
A.3.6 J、-3.6 J B.-3.6 J、3.6 J
C.1.8、-1.8 J D.-1.8 J、1.8 J
解析:F-x圍成的面積表示彈力的功。
W=×0.08×60 J-×0.04×30 J=1.8 J
據(jù)W=-ΔEp知,彈性勢能減少1.8 J,C對。
二、非選擇題
5.在猜想彈性勢能可能與哪幾個物理量有關(guān)的時候,有人猜想彈性勢能可能與彈簧的勁度系數(shù)k、與彈簧的伸長量x有關(guān)
10、,但究竟是與x的一次方,還是x的二次方,還是x的三次方有關(guān)呢?請完成下面練習以幫助思考。
(1)若彈性勢能Ep∝kx,由于勁度系數(shù)k的單位是N/m,彈簧伸長量x的單位是m,則kx的單位是__N__。
(2)若彈性勢能Ep∝kx2,由于勁度系數(shù)k的單位是N/m,彈簧伸長量x的單位是m,則kx2的單位是__J__。
(3)若彈性勢能Ep∝kx3,由于勁度系數(shù)k的單位是N/m,彈簧伸長量x的單位是m,則kx3的單位是__J·m__。
從(1)、(2)、(3)對單位的計算,你可以得到的啟示:__彈性勢能Ep與彈簧伸長量x的二次方有關(guān)的猜想有道理__。
解析:物理量與單位是否統(tǒng)一是驗證探究正確
11、與否的方法之一。
6.通過探究得到彈性勢能的表達式為Ep=。式中k為彈簧的勁度系數(shù),x為彈簧伸長(或縮短)的長度。請利用彈性勢能的表達式計算下列問題。
放在地面上的物體,上端系在勁度系數(shù)k=400 N/m的彈簧上,彈簧的另一端拴在跨過定滑輪的繩子上,如圖所示。手拉繩子的另一端,當往下拉0.1 m時,物體開始離開地面,繼續(xù)拉繩,使物體緩慢升高到離地h=0.5 m高處。如果不計彈簧質(zhì)量和各種摩擦,求拉力所做的功以及彈簧的彈性勢能。
答案:22 J 2 J
解析:注意物體剛好離地的條件,x=0.1 m是解決本題的關(guān)鍵,并且物體緩慢升高時,拉力不變,剛好離開地面后拉力與物體重力的大小相等。
彈性勢能Ep=kx2=×400×0.12 J=2 J。
剛好離開地面時,G=F=kx=400×0.1 N=40 N,
則物體緩慢升高,F(xiàn)=40 N,物體上升h=0.5 m,
拉力克服重力做功W=Fl=mgh=40×0.5 J=20 J,
則拉力共做功W′=(20+2) J=22 J。
- 6 -