并會(huì)根據(jù)函數(shù)的性質(zhì)求參數(shù)范圍.2.會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問題自主梳理1函數(shù)的最值1函數(shù)fx在a。b上必有最值的條件如果函數(shù)yfx的圖象在區(qū)間a。1.了解向量的實(shí)際背景.2.理解平面向量的概念理解兩個(gè)向量相等的含義.3.理解向量的幾何表示.4.掌握向量加法減法的運(yùn)算。學(xué)案6函數(shù)的奇偶性與周期性導(dǎo)學(xué)目標(biāo)。
步步高屆高三數(shù)學(xué)大一輪復(fù)習(xí)Tag內(nèi)容描述:
1、學(xué)案58變量間的相關(guān)關(guān)系導(dǎo)學(xué)目標(biāo): 1.會(huì)作兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)的散點(diǎn)圖,會(huì)利用散點(diǎn)圖認(rèn)識(shí)變量間的相關(guān)關(guān)系.2.了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程自主梳理1兩個(gè)變量的線性相關(guān)1正相關(guān)在散點(diǎn)圖中,點(diǎn)散布在從。
2、學(xué)案48直線與直線的位置關(guān)系導(dǎo)學(xué)目標(biāo): 1.能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直.2.能用解方程組的方法求兩條相交直線的交點(diǎn)坐標(biāo).3.掌握兩點(diǎn)間的距離公式點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離自主梳理1兩直線的位置關(guān)系平面上兩。
3、學(xué)案37合情推理與演繹推理導(dǎo)學(xué)目標(biāo): 1.了解合情推理的含義,能利用歸納和類比等進(jìn)行簡(jiǎn)單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.2.了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理.3.了解合情推理和演繹推理之間的。
4、學(xué)案44空間的垂直關(guān)系導(dǎo)學(xué)目標(biāo): 1.以立體幾何的定義公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面垂直的有關(guān)性質(zhì)與判定定理.2.能運(yùn)用公理定理和已獲得的結(jié)論證明一些空間圖形的垂直關(guān)系的簡(jiǎn)單命題自主梳理1直線與平面垂直1判定直線和平面垂直的方法定。
5、學(xué)案15導(dǎo)數(shù)的綜合應(yīng)用導(dǎo)學(xué)目標(biāo): 1.應(yīng)用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,并會(huì)根據(jù)函數(shù)的性質(zhì)求參數(shù)范圍.2.會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問題自主梳理1函數(shù)的最值1函數(shù)fx在a,b上必有最值的條件如果函數(shù)yfx的圖象在區(qū)間a,b上,那么它必有最大值和最小值2。
6、學(xué)案25平面向量及其線性運(yùn)算導(dǎo)學(xué)目標(biāo): 1.了解向量的實(shí)際背景.2.理解平面向量的概念理解兩個(gè)向量相等的含義.3.理解向量的幾何表示.4.掌握向量加法減法的運(yùn)算,并理解其幾何意義.5.掌握向量數(shù)乘的運(yùn)算及其意義,理解兩個(gè)向量共線的含義.6。
7、學(xué)案21兩角和與差的正弦余弦和正切公式導(dǎo)學(xué)目標(biāo): 1.會(huì)用向量數(shù)量積推導(dǎo)出兩角差的余弦公式.2.能利用兩角差的余弦公式導(dǎo)出兩角差的正弦正切公式.3.能利用兩角差的余弦公式導(dǎo)出兩角和的正弦余弦正切公式.4.熟悉公式的正用逆用變形應(yīng)用自主梳理1。
8、167;2.6對(duì)數(shù)與對(duì)數(shù)函數(shù)2014高考會(huì)這樣考1.考查對(duì)數(shù)函數(shù)的圖象性質(zhì);2.對(duì)數(shù)方程或不等式的求解;3.考查和對(duì)數(shù)函數(shù)有關(guān)的復(fù)合函數(shù)復(fù)習(xí)備考要這樣做1.注意函數(shù)定義域的限制以及底數(shù)和1的大小關(guān)系對(duì)函數(shù)性質(zhì)的影響;2.熟練掌握對(duì)數(shù)函數(shù)的圖。
9、1.1 集合的概念與運(yùn)算一填空題1已知集合A3,2a,Ba,b,且AB2,則AB.解析因?yàn)锳B2,所以2a2,所以a1,又因?yàn)锽a,b,所以b2,所以AB1,2,3答案1,2,32.設(shè)全集Uxx是平行四邊形,Axx是菱形,Bxx是矩形,則A。
10、167;11.2用樣本估計(jì)總體2014高考會(huì)這樣考1.考查樣本的頻率分布分布表直方圖莖葉圖中的有關(guān)計(jì)算,樣本特征數(shù)眾數(shù)中位數(shù)平均數(shù)標(biāo)準(zhǔn)差的計(jì)算主要以選擇題填空題為主;2.考查以樣本的分布估計(jì)總體的分布以樣本的頻率估計(jì)總體的頻率以樣本的特征數(shù)。
11、學(xué)案42空間點(diǎn)線面之間的位置關(guān)系導(dǎo)學(xué)目標(biāo): 1.理解空間直線平面位置關(guān)系的含義.2.了解可以作為推理依據(jù)的公理和定理.3.能運(yùn)用公理定理和已獲得的結(jié)論證明一些空間圖形的位置關(guān)系的簡(jiǎn)單命題自主梳理1平面的基本性質(zhì)公理1:如果一條直線上的在一個(gè)。
12、學(xué)案6函數(shù)的奇偶性與周期性導(dǎo)學(xué)目標(biāo): 1.了解函數(shù)奇偶性周期性的含義.2.會(huì)判斷奇偶性,會(huì)求函數(shù)的周期.3.會(huì)做有關(guān)函數(shù)單調(diào)性奇偶性周期性的綜合問題自主梳理1函數(shù)奇偶性的定義如果對(duì)于函數(shù)fx定義域內(nèi)任意一個(gè)x,都有,則稱fx為奇函數(shù);如果對(duì)。
13、5.4平面向量的應(yīng)用2014高考會(huì)這樣考1.考查向量與平面幾何知識(shí)三角函數(shù)的綜合應(yīng)用;2.考查向量的物理應(yīng)用,利用向量解決一些實(shí)際問題復(fù)習(xí)備考要這樣做1.掌握向量平行垂直的條件和數(shù)量積的意義,會(huì)求一些角距離;2.體會(huì)數(shù)形結(jié)合思想,重視向量的。
14、學(xué)案66離散型隨機(jī)變量及其分布列導(dǎo)學(xué)目標(biāo): 1.理解取有限個(gè)值的離散型隨機(jī)變量及其分布列的概念,了解分布列對(duì)于刻畫隨機(jī)現(xiàn)象的重要性.2.理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡(jiǎn)單的應(yīng)用自主梳理1離散型隨機(jī)變量的分布列1隨著試驗(yàn)結(jié)果變化而變化的。
15、2.2函數(shù)的單調(diào)性與最值2014高考會(huì)這樣考1.以選擇或填空題的形式考查函數(shù)的單調(diào)性;2.考查求函數(shù)最值的幾種常用方法;3.利用函數(shù)的單調(diào)性求參數(shù)的取值范圍復(fù)習(xí)備考要這樣做1.從數(shù)形兩種角度理解函數(shù)的單調(diào)性與最值;2.判斷復(fù)合函數(shù)的單調(diào)性。
16、學(xué)案62幾何概型導(dǎo)學(xué)目標(biāo): 1.了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率.2.了解幾何概型的意義自主梳理1幾何概型如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度面積或體積成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱為幾何概型2在幾何概型中。
17、學(xué)案75坐標(biāo)系與參數(shù)方程導(dǎo)學(xué)目標(biāo):1.了解坐標(biāo)系的有關(guān)概念,理解簡(jiǎn)單圖形的極坐標(biāo)方程.2.會(huì)進(jìn)行極坐標(biāo)方程與直角坐標(biāo)方程的互化.3.理解直線圓及橢圓的參數(shù)方程,會(huì)進(jìn)行參數(shù)方程與普通方程的互化,并能進(jìn)行簡(jiǎn)單應(yīng)用自主梳理1極坐標(biāo)系的概念在平面上。
18、學(xué)案3簡(jiǎn)單的邏輯聯(lián)結(jié)詞全稱量詞與存在量詞導(dǎo)學(xué)目標(biāo): 1.了解邏輯聯(lián)結(jié)詞或且非的含義.2.理解全稱量詞與存在量詞的意義.3.能正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定7自主梳理1邏輯聯(lián)結(jié)詞命題中的或,且,非叫做邏輯聯(lián)結(jié)詞p且q記作pq,p或q記作p。
19、學(xué)案26平面向量的基本定理及坐標(biāo)表示導(dǎo)學(xué)目標(biāo): 1.了解平面向量的基本定理及其意義.2.掌握平面向量的正交分解及其坐標(biāo)表示.3.會(huì)用坐標(biāo)表示平面向量的加法減法與數(shù)乘運(yùn)算.4.理解用坐標(biāo)表示的平面向量共線的條件自主梳理1平面向量基本定理定理。
20、第六章數(shù)列學(xué)案28數(shù)列的概念與簡(jiǎn)單表示法導(dǎo)學(xué)目標(biāo): 1.了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法列表圖象通項(xiàng)公式.2.了解數(shù)列是自變量為正整數(shù)的一類特殊函數(shù)自主梳理1數(shù)列的定義按著的一列數(shù)叫數(shù)列,數(shù)列中的都叫這個(gè)數(shù)列的項(xiàng);在函數(shù)意義下,數(shù)列是的函。
21、第十章計(jì)數(shù)原理隨機(jī)變量及其分布學(xué)案63兩個(gè)計(jì)數(shù)原理導(dǎo)學(xué)目標(biāo): 理解分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,能正確區(qū)分類和步,并能利用兩個(gè)原理解決一些簡(jiǎn)單的實(shí)際問題自主梳理1分類加法計(jì)數(shù)原理完成一件事有兩類不同方案,在第1類方案中有m種不同的方法。
22、學(xué)案10函數(shù)的圖象導(dǎo)學(xué)目標(biāo): 1.掌握作函數(shù)圖象的兩種基本方法:描點(diǎn)法,圖象變換法.2.掌握?qǐng)D象變換的規(guī)律,能利用圖象研究函數(shù)的性質(zhì)自主梳理1應(yīng)掌握的基本函數(shù)的圖象有:一次函數(shù)二次函數(shù)冪函數(shù)指數(shù)函數(shù)對(duì)數(shù)函數(shù)等2利用描點(diǎn)法作圖:確定函數(shù)的定義。
23、學(xué)案36基本不等式及其應(yīng)用導(dǎo)學(xué)目標(biāo): 1.了解基本不等式的證明過程.2.會(huì)用基本不等式解決簡(jiǎn)單的最大小值問題自主梳理1基本不等式1基本不等式成立的條件:2等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí)取等號(hào)2幾個(gè)重要的不等式1a2b2 a,bR2a,b同號(hào)3a。
24、學(xué)案51橢圓導(dǎo)學(xué)目標(biāo): 1.了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.2.掌握橢圓的定義,幾何圖形標(biāo)準(zhǔn)方程及其簡(jiǎn)單幾何性質(zhì)自主梳理1橢圓的概念在平面內(nèi)與兩個(gè)定點(diǎn)F1F2的距離的和等于常數(shù)大于F1F2的點(diǎn)的軌跡。