轉(zhuǎn)化與化歸思想Tag內(nèi)容描述:
1、2019年高考數(shù)學二輪復(fù)習 專題訓練九 第4講 轉(zhuǎn)化與化歸思想 理 轉(zhuǎn)化與化歸思想方法,就是在研究和解決有關(guān)數(shù)學問題時采用某種手段將問題通過變換使之轉(zhuǎn)化,進而得到解決的一種方法一般總是將復(fù)雜的問題通過變換轉(zhuǎn)化。
2、思想方法訓練4 轉(zhuǎn)化與化歸思想 一 能力突破訓練 1 已知M x y y x a N x y x2 y2 2 且M N 則實數(shù)a的取值范圍是 A a2 B a 2 C a2或a 2 D 2a2 2 若直線y x b被圓x2 y2 1所截得的弦長不小于1 則b的取值范圍是 A 1 1 B 22。
3、思想方法訓練4 轉(zhuǎn)化與化歸思想 一 能力突破訓練 1 已知M x y y x a N x y x2 y2 2 且M N 則實數(shù)a的取值范圍是 A a2 B a 2 C a2或a 2 D 2a2 2 若直線y x b被圓x2 y2 1所截得的弦長不小于1 則b的取值范圍是 A 1 1 B 22。
4、思想方法訓練4 轉(zhuǎn)化與化歸思想 一 能力突破訓練 1 已知M x y y x a N x y x2 y2 2 且M N 則實數(shù)a的取值范圍是 A a2 B a 2 C a2或a 2 D 2a2 2 若直線y x b被圓x2 y2 1所截得的弦長不小于1 則b的取值范圍是 A 1 1 B 22。
5、第4講轉(zhuǎn)化與化歸思想轉(zhuǎn)化與化歸思想方法,就是在研究和解決有關(guān)數(shù)學問題時采用某種手段將問題通過變換使之轉(zhuǎn)化,進而得到解決的一種方法.一般總是將復(fù)雜的問題通過變換轉(zhuǎn)化為簡單的問題,將難解的問題通過變換轉(zhuǎn)化為容易求解的問題,將未解決的問題通過變換轉(zhuǎn)化為已解決的問題.轉(zhuǎn)化與化歸思想在高考中占有十分重要的地位,數(shù)學問題的解決,總離不開轉(zhuǎn)化與化歸,如未知向已知的轉(zhuǎn)化、新知識向舊知識的轉(zhuǎn)化、復(fù)雜問題向簡單問題。
6、第40練轉(zhuǎn)化與化歸思想思想方法解讀轉(zhuǎn)化與化歸思想方法,就是在研究和解決有關(guān)數(shù)學問題時,采用某種手段將問題通過變換使之轉(zhuǎn)化,進而使問題得到解決的一種數(shù)學方法一般是將復(fù)雜的問題通過變換轉(zhuǎn)化為簡單的問題,將難解的問題通過變換轉(zhuǎn)化為容易求解的問題,將未解決的問題通過變換轉(zhuǎn)化為已解決的問題轉(zhuǎn)化與化歸思想是實現(xiàn)具有相互關(guān)聯(lián)的兩個知識板塊進行相互轉(zhuǎn)化的重要依據(jù),如函數(shù)與不等式、函數(shù)與方程、數(shù)與形。