購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
沖壓模具設計中側壁起皺的分析
F.-k. Chen and Y.-C. Liao
臺灣 臺北市國立臺灣大學機械工程部門
在沖壓過程中,起皺一般發(fā)生在有錐度的方形杯子和帶有階梯的矩形杯子成形時。這兩種起皺類型的共同特征是起皺都發(fā)生在相對沒有支撐的側壁。在沖壓一個有錐度的方形杯子時,當發(fā)生起皺時,比如沖模間隙和沖壓毛壞的壓力大小等參數(shù)的影響通過有限元模擬方法被檢查到。模擬結果顯示沖模間隙越大,起皺的就越明顯,而且起皺不能通過增加沖壓力來被抑制。在研究帶有階梯的矩形杯子沖壓過程的起皺時,發(fā)現(xiàn)了一個有相似幾何類型的實際部分。在側壁被發(fā)現(xiàn)的起皺是因為介于沖頭和階梯邊緣的金屬板料不平衡伸展造成的。為減少起皺,一個最適宜的沖模設計方法就是利用有限元分析法。在無起皺產(chǎn)品中介于模擬結果和實測結果的好協(xié)議使有限元分析法生效,而且證實了利用有限元分析法去設計沖模的優(yōu)勢。
關鍵詞:側壁起皺;沖模;階梯的矩形杯子;帶有錐度的主形杯子
1. 介紹
起皺是在金屬板料成形中主要的缺陷之一。由于性能和視察的原因,在產(chǎn)品中起皺往往不能被接受。在金屬板料成形過程中,有三種形式的起皺頻繁的發(fā)生:邊緣起皺,側壁起皺和由于殘余的彈性壓力引起的未變形區(qū)域的彈性彎曲。在沖壓一個復雜形狀零件的操作時,側壁起皺意味著沖模腔中的起皺。由于側壁區(qū)域的金屬板料相對于其它區(qū)域的金屬板料不被工具所保征質量,側壁起皺的消除比邊緣起皺的抑制更難。很明顯,在未被加固的側壁區(qū)域中的金屬材料的額外拉伸可能防止起皺,而且在實際操作中也可以通過增加沖壓力來防止起皺,但是過度的拉力會通過裂痕導致失敗。因此,沖壓力必須處于一個狹小的范圍,一方面,要高于抑制起皺的力,另一方面,要低于產(chǎn)生破裂的力。沖壓力的狹小范圍很難計算。對于沖壓一個復雜形狀的零件,當起皺發(fā)生在中心區(qū)域時,有意義的沖壓力范圍甚至不存在。
為了檢查起皺的形成結構,Yoshida et al.發(fā)明了一種測試,在這種測試里,一塊薄板料不是均勻的沿著它的斜度被拉伸。他們也計劃一個近似的理論模型,在這種模型里面,起皺的開始取決于在壓力不均勻區(qū)域中有壓縮的側部力的彈性灣曲。Yu et al.從實驗性和分析性上研究起皺問題,通過理論分析,他發(fā)現(xiàn)帶有兩個圓周波的起皺可能發(fā)生,然而,實驗結果顯示是四到六個。當通過一個有錐度的模具畫出金屬板料時,Narayanasamy和sowerby用平底的沖頭和半球狀的沖頭檢查金屬板料的起皺。他們也試圖去把可以抑制起皺的道具分類。
那些努力都被聚中于和簡單形狀零件關聯(lián)的起皺問題上,例如:一個圓形的杯子。在90年代早期,金屬板料成形中三維動態(tài)軟件和有限元方法的成功運用使得分析包括在沖壓一個復雜形狀零件的起皺問題成為可能。在當前的研究中,三維有限元分析法被用來分析在沖壓一個帶有階梯的矩形部分的過程中,產(chǎn)生起皺的金屬流動制造參數(shù)上。
一個帶有階梯的方形杯子,在杯子的每一邊都有一個傾斜的側壁,在帶有錐度的杯子也相應的存在傾斜的側壁。在沖壓過程中,側壁上的金屬板料相對沒被支撐,因此,這個部位更容易起皺。在當前的研究中,起皺過程中的各種不同的制造參數(shù)的影響都在被研究。在沖壓一個帶有階梯的方形杯子時,就像圖1B顯示的一樣,可以觀測到另一種形式的起皺。為了評估分析的效力,在當前的研究中,一個確切階梯幾何形狀的物體被檢測。通過使用有限元分析法和用適宜的模具設計來減少起皺,起皺的原因被確定。在觀測一個實際產(chǎn)品成形時,通過有限元分析法得到的模具設計方法得到證實。
圖1帶有錐度方形杯子的拉伸(a)和帶有階梯的矩形杯子的拉伸(b)
2有限元模型
包括沖頭、模具和毛壞固定器等工具幾何學是用CAD或PRO/E軟件來設計的。同樣用CAD軟件,三節(jié)點和四節(jié)點的外形元素被采用用來為以上工具生產(chǎn)網(wǎng)眼系統(tǒng)。對于有限元模擬來說,工具被認為是剛硬的,而且對應的網(wǎng)眼被用來定義工具幾何學而不是壓力分析。同樣CAD軟件使用四節(jié)點外形元素來為板形壞料構造網(wǎng)眼。圖2顯示工具的完整布置的網(wǎng)眼系統(tǒng)和用來沖壓帶有階梯方形杯子的板形壞料。由于對稱條件,方形杯子的四分之一被分析。在模擬中,板形壞料放在壓力機上,沖模向下移動,逆著壓力機夾緊板形壞料。然后沖模上升使得板形壞料按著模腔成形。
圖2 有限元網(wǎng)眼
為了表演一個精確的有限元分析法,金屬板料的真實應力應變曲線被要求是輸入數(shù)據(jù)的一部分。在當前的研究中,拉深成形的金屬板料也被用來模擬。為在飛機上切割下的樣本測試被進行,它們依次從0度的旋轉方向到45度的旋轉方向,再到90度的旋轉方向進行著。平均的流動力σ,計算方程為σ=(σ0+2σ45+σ90)/4,因為每一個方法真實應變通常用來模擬帶錐度方形杯子和帶階梯矩形的沖壓,就如圖3顯示的那樣。
當前研究中所有的模擬利用有限元程序PAM-STAMP涉及SGI Indigo2工作站。為了完成模似所需輸入數(shù)據(jù)的設置,沖頭的速度一般設置在10m/s,庫侖摩擦系數(shù)設置在0.1。
圖3 金屬板料的應力應變關系
3 錐度方形杯中的起皺
正像圖1a顯示的那樣,草圖暗示著一些有關錐度方形杯子的尺寸,方形沖頭每一面的長度(2WP)、模腔的尺寸(2Wd)和高度(H)被認為是影響起皺的至關重要尺寸。在當前研究中,模腔尺寸和沖頭尺寸的差距的一半稱作沖模間隙(記作G),G= Wd- WP。相關的在側壁沒被支撐的金屬板料的寬度取決于沖模間隙,起皺假想通過增加沖壓力來被抑制。相對于沖壓一個錐度方形杯子,沖模間隙和沖壓力兩方面的影響在接下來的部分被研究。
3.1沖模間隙的影響
為了檢查沖模間隙對起皺的影響,在沖壓一個錐度方形杯子時,分別用20mm,30mm,50mm大小的沖模間隙進行模擬沖壓。在每次模擬沖壓中,模腔的尺寸都是固定在200mm,而且杯子拉深的高度都是100mm。三次模擬中使用的金屬板料都是380X380的方形尺寸,厚度也都是0.7mm,金屬的應力應變曲線如圖3所示。
圖4 G=50mm的帶有錐度的方形杯子
模擬結果顯示三次模擬中都發(fā)生起皺現(xiàn)象,沖模間隙為50mm沖壓出來的杯子模擬形狀如圖4。從圖4中可以看出,起皺分布在側壁,側壁拐角尤其明顯。這就說明在沖壓過程中,起皺是由于在側壁有大面積區(qū)域不被支撐,同樣,由于沖模間隙不一樣,沖頭各邊的長度和模腔尺寸也不一樣。由于橫向壓力的存大,在沖頭和模腔中拉深成形的金屬板料越來越不牢固。在壓縮下,側壁金屬板料不受限制的拉伸是起皺的主要原因。為了比較三種不同間隙沖壓出來的產(chǎn)品,兩個主要的應變比率β被介紹,β=εmin/εmax,這里的εmin和εmax分別是主要的和次要的應變。Hosford和Caddell已經(jīng)展示了β的實際值比β的評論值大,假設當起皺發(fā)生時,β的實際值越大,起皺的可能性就越大。
在三個沖模間隙不同的沖壓中,同一側壁高度,沿著橫截面M-N的β值在圖4中標記出,在圖5中畫出。圖5中說明嚴重的起皺一般發(fā)生在拐角處,而對三個沖模間隙不同的沖壓,在側壁中心很少發(fā)生起皺。還說明了沖模間隙越大,β的實際值就越大。因此,增加沖模間隙將增加在錐度方形杯子側壁處發(fā)生起皺的可能性。
3.2沖壓力的影響
眾所周知,在沖壓過程中,增加沖壓力可以幫助排除起皺。為了研究增加沖壓力的影響,沖模間隙為50mm與起皺是有關聯(lián)的,用沖模間隙為50mm的模具沖壓帶有錐度方形杯子被用不同的沖壓力來模擬了。沖壓從100KN增加到600KN,這兩個力分別產(chǎn)生0.33Mpa和1.98Mpa。在上述部分,剩下的模擬條件與給定的是一樣的。處于中間的300KN也被用來模擬。
模擬結果顯示沖壓力的增加并沒有幫助消除發(fā)生在側壁的起皺。在圖4中已標出沿著橫截面M-N的β值與沖壓力為100KN和600KN的β值作比較。模擬結果指出兩種情況下,沿著橫截面M-N的β值是一樣的。為了檢查兩種不同沖壓力的起皺形狀,正如圖4和圖6標出的那樣,側壁上從底部向上有五處不同位置的橫截面。從圖6可以看出,兩個外殼的波浪形橫截面是相似的。這就說明在沖壓帶有錐度的方形杯子時,沖壓力不影響起皺的發(fā)生,這是因為起皺的原因主要是由于在有橫向壓力存在的側壁處有大面積區(qū)域不被支撐。沖壓力對沖頭和模腔之間材料不穩(wěn)定的模式并沒有影響。
圖5 沿著橫截面M-N不同沖模間隙的β值
4階梯矩形杯子
在沖壓一個階梯矩形杯子時,起皺發(fā)生在側壁即使沖模間隙并不是那么重要。輪廓1顯示沖壓階梯矩形杯子的沖頭草圖,在這張草圖中,側壁C沿臺階D-E而行。在近期的研究中,在一個實際的產(chǎn)品中檢查到了這種幾何形狀。這種產(chǎn)品使用的原材料的厚度是0.7mm,從拉力測試中獲得的應力應變關系如圖3所示。
這種沖壓部分產(chǎn)品的程序包括通過清理焊縫的深拉。在這種深拉過程中,沒有焊縫被用在沖模表面來幫助幫助金屬的流動。但是,由于沖頭拐角處的半徑過小和其復雜的幾何形狀,如圖7顯示的那樣,在沖頭邊緣上部經(jīng)常發(fā)生拉裂,在真實產(chǎn)品的側壁處經(jīng)常發(fā)生起皺。從圖7中可以看出,皺紋發(fā)分布在側壁上,但是在階梯邊緣拐角處最為嚴重,就像圖1(b)中A-D,B-E顯示的那樣。在沖頭的上部邊緣,金屬往往被拉裂,就像圖7所示。
為了進一步的了解沖壓過程中板料的變形,誕生了一種有限元的方法。這種有限元模擬方法被在最初的設計中。部分的模擬形狀如圖8所示。從圖8中可以看出,零件上部邊緣的網(wǎng)眼被拉深,皺紋分布在側壁上,類似真實零件中的那樣。
圖6 從圖a的100KN到圖b的600KN不同側壁高度的橫截面線條
圖7 產(chǎn)品零件中的拉裂和起皺
圖8 產(chǎn)品拉裂和起皺的模擬形狀
如圖1(b)就像A-B邊緣半徑和沖孔拐角處A的半徑一樣,沖孔的半徑也很小,這被認為是拉裂的最主要原因。但是,根據(jù)有限元分析的結果,拉裂可以通過增加以半徑來避免。這種理念在現(xiàn)實產(chǎn)品中通過增加半徑得到證實。
個別的嘗試也被用來消除起皺。第一,沖壓力加到原來的2倍。但是,就像在拉深帶有錐度的杯子中得到的結果一樣,沖壓力對消除起皺現(xiàn)象沒有起有很大的效果。通過增加摩擦和毛坯尺寸也得到同樣的結論。于是我們推測,這種起皺不能通過增加沖壓力來得到抑制。
由于在金屬屈服于過大壓力的區(qū)域,往往會因為大量的金屬流動而起皺,一種通過在起皺區(qū)域增加掛鉤用于消除起皺的簡單方法被用來吸收多余的材料。為了多余的金屬能有效的被吸收,掛鉤應該平衡的加在起皺位置?;谶@種理念,兩個掛鉤被加在鄰近在壁上吸收多余的材料,如圖9如示。模擬結果顯示,階梯拐角處的起皺正如想象的那樣被吸收,但是,一些起皺仍然沒被吸收。這說明在側壁處需要更多的掛鉤來吸收所有過量的材料,但是這在模具設計中是不允許的。
利用有限元分析法分析沖壓工序的一個優(yōu)勢是沖壓過程中板料的變形形狀可以被監(jiān)測,而這在真實的產(chǎn)品沖壓過程中是不可能的。對沖壓過程中金屬流動的精密監(jiān)測顯示板料最開始通過沖頭的力按模腔的形狀成形,直到板料接觸到如圖1(b)階梯D-E邊緣才形成起皺。起皺的形狀如
圖9 加到側壁的起皺
圖10顯示的那樣。這就為模具設計的改進提供了有價值的信息。
圖10 當板料接觸臺階邊緣的起皺形成
圖11 切除了的臺階拐角
對于起皺的發(fā)生,最初的一個猜想是沖頭拐角處范圍A和階梯拐角處范圍D之間的金屬板料處于不平坦的拉深,就如圖1(b)所示。階梯拐角處被切主要是為了改善拉深條件,這樣就允許通過增加階梯邊緣有更多的拉伸被應用到如圖11所示,從而使得模具設計的改進得到發(fā)展。但是,杯子側壁處仍然有起皺,這就意味著起皺是因為整個沖頭邊緣和整個階梯邊緣的不平坦引起的,不僅僅是沖頭拐角處和階梯拐角處之間的不平坦。為了證實這種說法,兩種改進過了的模具設計被用來實驗:為了描述想象中的形狀用兩種拉深操作,一種是切去整個階梯,而另一種是增加更多的拉深操作。前一個方法的模擬形狀所圖12所示。自從更低的階梯被切去后,拉深工序與圖12中的矩形杯子拉深工序性很相似。從圖12中可以看出起皺現(xiàn)象已被消除。
在這兩種操作的拉深工序中,板料最初是被拉到很深的階梯處,如圖13(a)所示,然后,較低的階梯在第二步拉深操作中成形,同是,如圖13(b)所示的想象形狀也得到了。從圖13(b)可以清晰的看出,通過兩步拉深工序可以造出沒有起皺的階梯矩形杯子,同時也說明在兩步拉深工序中,如果相應的順序被應用,則更低一些的階梯處的成形是伴隨更深階梯處成形和最深階梯邊緣處成形的最早成形,如圖1(b)中的A-B,因為金屬不容易通過較低的階梯進入模具型腔。
圖12改善模具設計的模擬形狀
圖13 兩個操作步驟中的a第一步操作 b第二步操作
有限元分析法說明用簡單的拉深操作來設計理想產(chǎn)品的沖壓模具設計是很難完成的。但是,由于額外的模具費用和操作費用,兩個操作的制造費用是很高的。為了保持較低的制造費用,零件的設計師對形狀做出了合適的改變,而且通過有限元模擬分析法結果去切除較低的臺階來改善模具設計,如圖12所示。隨著設計方法的改進,產(chǎn)品真實的沖壓模具被制造出來,而且零件還沒有起皺,如圖14所示。通過有限元模擬分析法得到的零件也沒有起皺。
為了進一步驗證有限元模擬分析法的結果,有限元模擬分析法得到的沿橫截面G-H的厚度分布如圖14所示,這與產(chǎn)品的尺寸做了比較,比較的結果顯示在圖15。從圖15可以看出有限元模擬分析法得到的預想的厚度分布和產(chǎn)品得到的厚度分布是相符合的。這種吻合證實了有限元模擬分析法的效率。
圖14 無缺陷產(chǎn)品零件
圖15 G-H處模擬和測量厚度
5概要和結束語
通過有限元模擬分析法研究了兩種在沖壓過程中的起皺,而且還檢查了其起皺的原因和消除起皺的方法。
第一種形式的起皺發(fā)生在沖壓帶有錐度的方形杯子的側壁上,這種起皺的原因是因為沖模間隙過大(沖模間隙就是模腔的尺寸和沖頭的尺寸的差距)。當金屬被拉至模腔中,在沖頭和型腔中有一有害的拉深時,大的沖模間隙導致金屬板料的大面積區(qū)域不被支撐,因此大面積區(qū)域不被支撐導致起皺。有限元模擬分析法顯示這種起皺不能通過增加沖壓力的方法來得到抑制。
另一種形式的起皺發(fā)生在有階梯矩形的幾何形狀物體沖壓過程中。起皺往往發(fā)生在臺階以上的側壁,甚至沖模的間隙不是足夠的大。通過有限元模擬法得知,這種起皺主要是由于在沖頭和臺階邊緣存在不平坦的拉伸。在模具設計過程中,通過有限元模擬分析法單獨的嘗試被用來消除起皺,切除了臺階的模具被建立。通過無缺陷的零件證實了這種模具設計方法對消除起皺的作用。有限元模擬分析法得到的結果和真實產(chǎn)品中看到的結果相吻合說明了有限元模擬分析法的準確性,還證實了用有限元分析法代替真實的模具制造方法的效力。
感謝
作者希望感謝中國人民共和國民族科學委員會授于NSC-86-2212-E002-028編號才使得這個項目得到發(fā)展。他們也希望感謝KYM提供了產(chǎn)品零件。
參考文獻
1. K. Yoshida, H. Hayashi, K. Miyauchi, Y. Yamato, K. Abe, M. Usuda, R. Ishida and Y. Oike,在金屬板料,皺紋機械工具的效果取決于不均勻的拉深
2. T.X.Yu,W.Johnson 和 W.J.Stronge, “圓形碟子在半球形模具中的沖壓成形”,機械學雜志,26,pp.131-148,1984
3. W.J.stronge,M.P.F.Sutcliffe和T.X.Yu,在沖壓期間,圓形碟子的塑性起皺。實驗的技巧,pp.345-353,1986.
4. R.Narayanasamy和R.Sowerby,“當用一種圓錐形的沖模成形時的金屬板料起皺”,材料處理技術雜志,41,pp.275-290,1994.
5. W.F.Hosford 和 R.M.Caddell,金屬成形:機械和冶金,1993年第二季。
設計題目: 墊片單工序落料沖壓模具設計
學科專業(yè):
作者姓名:
導師姓名:
完成時間:
目 錄
一、設計課題 2
二、設計內容 3
2.1 沖壓件工藝分析 3
2.2 確定沖壓工藝方案 3
2.3 主要設計計算 5
2.3.1 工件尺寸公差轉換及毛坯尺寸計算 5
2.3.2 排樣及相關計算 5
2.3.3 沖壓力計算 7
2.3.4 壓力機初選 8
2.3.5 凸凹模刃口尺寸計算 8
3.3.6 壓力中心的計算 11
2.4 模具的總體設計 12
2.4.1 模具類型的選擇 12
2.4.2 定位方式的選擇 12
2.4.3卸料方式的選擇 12
2.4.4 導向方式的選擇 12
2.5 模具零部件設計 12
2.5.1 整體式凹模 12
2.5.2 凸模 13
2.5.3模架的選用 15
2.5.4 導柱導套的選用 16
2.5.5 壓力機的選用 17
三、模具裝配 18
四.結論 19
參考文獻 20
一、設計課題
圖紙:
設計資料(數(shù)據(jù))及要求:
材料:45鋼
厚度:1.5mm
生產(chǎn)批量:中等批量
圖1.1
二、設計內容
2.1 沖壓件工藝分析
1) 該工件只有落料一個工序,材料為45鋼材料;
2) 工件的外形左右對稱;
3) 有文獻(1)P65的表3-15有當交角<時,過度圓角;當交角>時有過度圓角,在此工件中圓角均遠大于這些最小值;
4) 該工件的精度等級為IT10,屬于一般的精度等級;
5) 由文獻(1)p67表3-20有沖裁斷面的表面粗糙度為
綜上所述,該工件的結構工藝性較好,沖裁較為容易。
2.2 確定沖壓工藝方案
該工件只有落料一個工序,可以有以下幾種工藝方案:
方案一:采用一副簡單的落料模,其排樣圖有兩種形式,第一種是采用單排形式,其排樣圖如下圖所示
分析比較:
方案一:.采用單工序模生產(chǎn),模具結構簡單,制造成本低。
方案二:一副模具上裝兩副凸凹模,結構設計較為復雜,制造成本較高,但是生產(chǎn)效率高。
方案確定:
雖然方案二生產(chǎn)效率較高,但是模具的制造成本較高,結構設計較為復雜,對于小批量生產(chǎn)來說,沒有必要在模具上投入過高資本。相比之下,方案一模具結構簡單,制造成本低,更適合進行小批量生產(chǎn),節(jié)約生產(chǎn)資本。
2.3 主要設計計算
2.3.1 工件尺寸公差轉換及毛坯尺寸計算
按“入體原則”標注工件尺寸公差,由文獻(2)p257表3-2公差等級為10級時工件上的尺寸如下:
毛坯的面積為
毛坯周長為
2.3.2 排樣及相關計算
采用導料板進行側向導料,且增加測壓裝置保證精度要求。
采用單排,
圖2.3.2.1
由文獻(1)p56表3-9查的最小搭邊值分別為:
側面a=2.5;工件間a1=2mm。
為方便計算,此次設計統(tǒng)一取值為2.5mm。
由文獻(1)p57表3-10查得工件最大寬度為11mm時,條料寬度的單向偏差為
由文獻(1)p58表3-12查的導料板與最寬條料之間的間隙值為
則由文獻(1)p56式(3-14)有條料的寬度為
材料的利用率為
2.3.3 沖壓力計算
由文獻(4)p29表1-50有45鋼抗拉強度——,在此次計算中取,采用彈性卸料和下出料方式進行沖裁。
由文獻(1)p60式(3-20)有落料力:
由文獻(1)p61表3-14有,并取n=7
由文獻(1)p61式(3-22)有推件力為:
由文獻(1)p61表3-14有
由文獻(1)p61式(3-21)有卸料力為:
由文獻(1)p61式(3-24)有沖壓工藝力為:
為使壓力機安全工作,取壓力機的公稱壓力為沖壓工藝力的1.2倍,則有:
壓力機公稱壓力:
2.3.4 壓力機初選
根據(jù)沖壓工藝總力計算結果,并結合工件高度,初選開式雙柱可傾壓力機J23-10.
2.3.5 凸凹模刃口尺寸計算
由于工件的形狀較為復雜,所以凸凹模采用配作法加工。由文獻(1)P43式(3-2)由經(jīng)驗值法確定最小間隙值,則有
圖2.3.5.1
該工件屬于落料件,選凹模為設計基準,只需要計算落料凹模刃口尺寸及制造公差,凸模刃口尺寸由凹模實際尺寸按間隙要求配作。
由文獻(2)p257表3-2公差等級為10級時工件上的尺寸,及文獻(1)p48表3-7相應的磨損系數(shù)如下表所示
尺寸的編號
尺寸大小
尺寸公差
磨損系數(shù)
a
0.058mm
1
b
0.048mm
1
c
0.04mm
1
d
0.058mm
1
e
0.04mm
1
f
0.048mm
1
3.3.6 壓力中心的計算
由圖可知壓力中心一定在Y軸上,只需計算出圖中標注的幾部分的Y值即可,圓弧的壓力中心位置可由文獻(1)P63式(3-27)求得。
理論壓力中心與模具中心的偏移量較小,所以直接取凹模幾何中心為壓力中心。
2.4 模具的總體設計
2.4.1 模具類型的選擇
由沖壓工藝分析可知,采用單工序沖壓,所以模具類型為單工序落料模,又由于精度要求不高,所以選用后側導柱型模座。
圖2.4.1
2.4.2 定位方式的選擇
導料采用導料板,并采用擋料銷、初始擋料銷定位。
2.4.3卸料方式的選擇
由于材料較軟,在沖壓過程中板料可能發(fā)生翹曲變形,必須添加壓料裝置,所以采用彈性卸料和下出料方式。
2.4.4 導向方式的選擇
由于工件的結構較為簡單,同時為了節(jié)約生產(chǎn)成本,簡化模具結構降低模具制造難度,方便安裝調整,該單工序落料模采用后側導柱導套式落料模。
2.5 模具零部件設計
2.5.1 整體式凹模
沖裁時凹模承受沖裁力和側向壓力的作用,受力情況比較復雜,通常根據(jù)沖裁的板料的厚度和沖裁件的輪廓尺寸按經(jīng)驗公式來確定,由文獻(1)p86式(3-41)、(3-42),查表3-24中的凹模厚度系數(shù)k=0.5,得凹模的尺寸為:
2.5.2 凸模
由工件形狀可知凸模形式為非圓形凸模,且通過分析比較:落料凸模截面較大,為固定方便采用圓凸臺固定較為可靠。
凸模長度計算:
L=h+(15~20)mm;
上式中,--凸模固定板厚度;
--卸料板厚度;
--導尺厚度
L—凸模長度。
15~20mm——包含凸模進入凹模的深度、凸模修磨量、沖模在閉合狀態(tài)下卸料板到凸模固定板間的距離。
凸模長度由上表可查得, L=50 mm
由于此工件的形狀較為復雜,加工時比較適合采用線切割加工,考慮到加工工藝性要求,凸模采用直通式,固定方式采用鉚接式,凸模的長度取為50mm,
當凹模的尺寸確定之后,由文獻(3)p128表5-3得彈壓卸料縱向和橫向送料典型組合尺寸(GB/T8066.2-95)
2.5.3模架的選用
零件名稱
零件數(shù)
零件尺寸(mm)
凸模
1
42
配用模架閉合高度(H)
最大
最小
150
130
墊板厚度
1
8
固定板厚度
1
8
卸料板厚度
1
14
導料板
(長度厚度)
1
100X8
凹模厚度
1
16
凹模固定螺釘
4
M8
承料板
固定螺釘
4
M8
凹模固定銷定
4
導料板
固定螺釘
4
卸料彈簧
4
設計時根據(jù)卸料力選取
卸料螺釘
4
8X35
凸模固定螺釘
4
M8X35
凸模固定銷釘
4
M8X35
由于工件精度要求不太高,且考慮模具結構簡單。故選擇后側導柱模架。
由 [3] 105頁表4-6可查得
表2 模座尺寸(單位:mm)
凹模周界
L
100
B
100
模座厚度H
上模座
25
下模座
30
上模座寬度L
110
導柱孔間距S
116
導柱孔中心與上、下模座中心的距離A
75
導柱孔中心與上、下模座最大距離A
110
模座導柱凸緣半徑 R
32
上、下模座凸緣長度 l
60
上模座D(H7)
基本尺寸
32
極限偏差
下模座d(R7)
基本尺寸
20
極限偏差
2.5.4 導柱導套的選用
由模架尺寸選用導柱導套,選用滑動導柱B型及滑動導套B型,由 [4] 78頁表3-38及表3-39 可查得導柱導套尺寸如下表:
表4 導柱尺寸(單位:mm)
導柱直徑d
基本尺寸
20
極限偏差
h5
h6
導柱長度L
100--130
表5 導套尺寸(單位:mm)
導套外圓直徑D
基本尺寸
20
極限偏差
導套長度L
65
導套上端尺寸H
23
2.5.5 壓力機的選用
由前面沖裁力計算結果可知F= 88.71KN。由模具的設計及實際情況考慮選擇開式雙柱可傾壓力機J23-25。具體參數(shù)見下表:
表 6開式雙柱可傾壓力機參數(shù)
d
基本尺寸
32
極限偏差
0.050
d1
M20X1.2
L
79
L1
56
L2
3
S
27
d2
18
d3
11
d4
M6
b
3.5
c
1.5
三、模具裝配
根據(jù)落料模的特點,先裝上模,再裝下模較為合理,并調整間隙,試沖,返修。具體過程如下。
四.結論
通過對零件落料模的設計,更深一層地了解沖裁模的設計流程,包括沖裁件的工藝分析、工藝方案的確定、模具結構形式的選擇、必要的工藝計算、主要零部件的設計、壓力機型號的選擇、總裝圖及零件圖的繪制。在設計過程中,有些數(shù)據(jù)、尺寸是一點也馬虎不得,只要一個數(shù)據(jù)有誤,就得全部改動,使設計難度大大增加。條料送進時利用固定擋料銷定步距。操作時完成第一步后,把條料向上抬起向前移動,移到剛沖過的料口里,再利用導料銷繼續(xù)下一個工件的沖裁。重復以上動作來完成所需工件的沖裁,沖完一側的工件之后翻遍沖另一側的工件,首次定位用初始擋料銷。通過本次沖壓模具課程設計,是我對模具有了更深的認識,同時深刻認識到要成為一名優(yōu)秀的模具設計人員還有很長的路要走,而非一朝一夕之事。再有,通過本次設計為今后的畢業(yè)設計,未來的工作奠定了一定的基礎。
參考文獻
[1] 李奇涵主編.沖壓成形工藝與模具設計[M]·北京:科學出版社,2007年;
[2] 甘永立主編幾何公差與檢測[M]·8版,上海:上??茖W出版社,2008.1;
[3].王立人,張輝主編.沖壓模具設計指導[M]·北京:北京理工大學出版社,2009.8;
[4] 馮炳堯,韓泰榮,蔣文森主編.模具設計與制造簡明手冊[S]·第二版.
上海:上海科學技術出版社,1998.7;
[5侯洪生主編。機械工程圖學[M]·北京:科學出版社,2001
13