購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢(xún)QQ:12401814
黃河科技學(xué)院畢業(yè)設(shè)計(jì)(論文)文獻(xiàn)翻譯 第 18 頁(yè)
非正交主軸與工作臺(tái)型五軸工具機(jī)后處理程序開(kāi)發(fā)
黃昭堂.佘振華摘要:后處理程序是將刀具位置數(shù)據(jù)轉(zhuǎn)換成加工操作所需數(shù)據(jù)的重要接口,其對(duì)五軸工具機(jī)來(lái)說(shuō)是非常復(fù)雜的,因?yàn)樵谖遢S工具機(jī)中線(xiàn)性軸和旋轉(zhuǎn)軸是同動(dòng)的。以前大部分的五軸后處理方法研究只局限于正交的工具機(jī)構(gòu)型,本論文針對(duì)主軸型與工作臺(tái)型及工作臺(tái)/主軸型有非正交旋轉(zhuǎn)軸的五軸工具機(jī)開(kāi)發(fā)其后處理算法,這種構(gòu)型的工具機(jī)具有從立式加工轉(zhuǎn)換為臥式加工的優(yōu)點(diǎn)。本文以齊次坐標(biāo)轉(zhuǎn)換為基礎(chǔ),利用運(yùn)動(dòng)學(xué)的前向轉(zhuǎn)換,求得五軸工具機(jī)的形狀創(chuàng)成函數(shù)矩陣,再由逆向轉(zhuǎn)換,解出工具機(jī)各軸運(yùn)動(dòng)的解析方程。后處理程序中的線(xiàn)性算法是為了保證加工的精確性而開(kāi)發(fā)的。五軸后處理程序接口是利用Borland C++、Builder與OpenGL開(kāi)發(fā),以產(chǎn)生三種構(gòu)型的NC碼,經(jīng)由商業(yè)實(shí)體切削仿真軟件VERICUT驗(yàn)證及試加工實(shí)驗(yàn),證實(shí)所提出的后處理方法論的可行性。
關(guān)鍵詞:后處理、五軸加工、形狀創(chuàng)成函數(shù)、非正交旋轉(zhuǎn)軸
1、引言
五軸工具機(jī)被越來(lái)越多地的用戶(hù)所使用的,特別是用于加工復(fù)雜自由曲面。傳統(tǒng)的五軸工具機(jī)有三個(gè)正交的線(xiàn)性軸和旋轉(zhuǎn)軸。這里所說(shuō)的旋轉(zhuǎn)軸通常是指與相互正交的中心線(xiàn)平行的線(xiàn)性軸。各國(guó)的機(jī)械工具制造商,如Makino,Ingersol和Deckel Maho,將非正交旋轉(zhuǎn)軸或工作臺(tái)進(jìn)行改進(jìn)使機(jī)器具有更好的多功能性和靈活性。“非正交”是指軸旋轉(zhuǎn)體的振蕩運(yùn)動(dòng),這類(lèi)似與一張桌子上的硬幣的緩慢旋轉(zhuǎn)。五軸工具機(jī)有一個(gè)旋轉(zhuǎn)軸的傾斜面[1],而不同于平行的直線(xiàn)軸,它提供的優(yōu)勢(shì)可使切削刀具在一個(gè)半球內(nèi)指向任意角度[2,3]。這種機(jī)器可以在連續(xù)的水平和垂直位置移動(dòng)。非正交旋轉(zhuǎn)軸為生產(chǎn)航空部件及汽車(chē)頭部提供了便利。運(yùn)動(dòng)經(jīng)電機(jī)主軸傳遞給空心軸和齒輪[4]。由于線(xiàn)性和旋轉(zhuǎn)運(yùn)動(dòng)同時(shí)作用在五軸數(shù)控機(jī)床上,導(dǎo)致了五軸數(shù)控程序比三軸數(shù)控程序更加的復(fù)雜。后處理程序必須利用刀具位置(CL)將數(shù)據(jù)從凸輪系統(tǒng)轉(zhuǎn)化為機(jī)器控制數(shù)據(jù)。盡管先進(jìn)的控制器可以接受實(shí)時(shí)的數(shù)據(jù),而不需要后處理,但他們是相當(dāng)昂貴的[5]。該方法主要可以分為三類(lèi):圖形[ 6],[7 ]和坐標(biāo)數(shù)值迭代[8-10]。由坐標(biāo)變換方法解析方程,產(chǎn)生的數(shù)控?cái)?shù)據(jù)最有效,它已被廣泛采用在最近的研究中。然而,幾乎所有的這些方法包括后處理方法均采用正交旋轉(zhuǎn)軸五軸工具機(jī)。研究解決非正交配置的相對(duì)較少。例如,有為主軸傾斜式發(fā)展的非正交旋轉(zhuǎn)軸五軸機(jī)床后處理程式[11]。最近,Sorby [ 12]發(fā)表了一篇關(guān)于封閉形式五軸工具機(jī)的非正交旋轉(zhuǎn)工作臺(tái)論文。然而,該解決方案具有一定的局限性。例如,工件原點(diǎn)的偏移向量和二次主旋轉(zhuǎn)不明確,及角度傾斜45度的非正交軸的固定。
本研究開(kāi)發(fā)一種后置的雙主軸和工作臺(tái)五軸工具機(jī)?;邶R次坐標(biāo)變換矩陣的解析方程,確定方程的一般形式;偏移向量定義為從工件的起始位置回轉(zhuǎn)至工作臺(tái),偏移向量在非正交軸中是可變的。此外還包括線(xiàn)性化算法的后處理開(kāi)發(fā),保證加工精度。
一個(gè)基于后處理是開(kāi)發(fā)和圖形界面動(dòng)態(tài)顯示的表面模型議案的提出幫助用戶(hù)輸入相關(guān)參數(shù)正確。此外,生成的NC數(shù)據(jù)進(jìn)行驗(yàn)證,使用商業(yè)實(shí)體切削仿真軟件VERICUT [13]進(jìn)行五軸加工實(shí)驗(yàn)工具機(jī)的非正交旋轉(zhuǎn)工作臺(tái)的后處理方法確認(rèn)。
2、五軸工具機(jī)的配置與類(lèi)型
大多數(shù)五軸工具機(jī)有兩個(gè)旋轉(zhuǎn)軸作為常規(guī)X軸,X軸和Z軸。五軸機(jī)床可分為三種類(lèi)型:主軸型,工作臺(tái)型和工作臺(tái)/主軸型。商業(yè)方面用正交配置,如圖1所示三種類(lèi)型。圖1(a)為非正交旋轉(zhuǎn)主軸型。圖1(b)為非正交旋轉(zhuǎn)工作臺(tái)型,如Deckel Maho DMU 70改進(jìn)型[ 15],其在工作臺(tái)上具有兩個(gè)旋轉(zhuǎn)軸,和一個(gè)平行與Z軸而與非正交旋轉(zhuǎn)軸存在一定的傾斜角度的旋轉(zhuǎn)軸(C軸)。圖1(c)為工作臺(tái)\主軸型,如Deckel Maho 200P [ 15],其中一個(gè)旋轉(zhuǎn)工作臺(tái)(c)是以在工作臺(tái)上的非正交旋轉(zhuǎn)軸(B軸)為主軸。由于作者已經(jīng)提出過(guò)主軸型非正交旋轉(zhuǎn)主軸的后處理程序,本研究著重于發(fā)展與其他兩種配置的后處理。
五軸機(jī)床可以看作是平動(dòng)與旋轉(zhuǎn)運(yùn)動(dòng)組合的機(jī)床。正向運(yùn)動(dòng)學(xué)方程必須建立數(shù)學(xué)模型來(lái)描述刀具相對(duì)于工件的切削運(yùn)動(dòng)。基本的坐標(biāo)變換矩陣,包括Trans矩陣和Rot矩陣 [ 16 ]。Trans矩陣式可以表示如下:
Trans(a,b,c)表示矢量a i+b j+c k
一般Rot矩陣用來(lái)描述旋轉(zhuǎn)的主軸單元。本坐標(biāo)系設(shè)定;則Rot矩陣可以表示為:
其“C”和“S” 分別為余弦和正弦函數(shù),且
圖1五軸工具類(lèi)型:a.主軸型 b.工作臺(tái)型 c.工作臺(tái)\主軸型
3、后處理程序
3.1工作臺(tái)傾斜型
圖2描繪了相關(guān)的坐標(biāo)系配置。工件坐標(biāo)系為而為刀具坐標(biāo)系。由于這兩個(gè)旋轉(zhuǎn)軸并不相交,則必存在一條公法線(xiàn)垂直于兩軸。公法線(xiàn)分別與C軸和B軸相交于RC和RB點(diǎn)。偏移向量為從原點(diǎn)至RC,而偏移向量為從RC至RB。
圖2傾斜型坐標(biāo)系
組成機(jī)床的結(jié)構(gòu)有:回轉(zhuǎn)工作臺(tái)C,回轉(zhuǎn)工作臺(tái)B,機(jī)床床身, X軸方向工作臺(tái),Y軸方向工作臺(tái),Z軸方向工作臺(tái),主軸和刀具。根據(jù)刀具與工件的相對(duì)位置和方向,將從工件開(kāi)始至刀具完成的過(guò)程稱(chēng)為形式塑造功能,[17]。這種機(jī)床的形式塑造過(guò)程,用數(shù)學(xué)矩陣形式表示如下:
其中Px,Py和Pz分別表示X,Y和Z軸的相對(duì)距離。和分別為與C軸和B軸的旋轉(zhuǎn)角度。采用右手螺旋定則判定+C和+B。方程(3)表示的函數(shù)矩陣,結(jié)合機(jī)床參數(shù)Px,Py,Px,和。第一步是計(jì)算刀具所需的旋轉(zhuǎn)角度,二是根據(jù)已知的旋轉(zhuǎn)角中心位置的直線(xiàn)計(jì)算所需的位置關(guān)系。
當(dāng)?shù)毒呶恢煤偷毒叩姆较蛳蛄看_定后,CL數(shù)據(jù)可用矩陣形式表示如下:
由于方程(3)和(4)都表示相同的刀具和工件之間的關(guān)系,聯(lián)立這兩個(gè)矩陣,確定所需的參數(shù)。結(jié)合兩個(gè)矩陣得到下列公式:
首先可以確定,的值。代入式(5)得:
值得注意的是,在范圍內(nèi)的表達(dá)方式如下:
如果范圍在–π到0之間,方程應(yīng)修改為式(8)所示。另一方面,如果同時(shí)滿(mǎn)足以上兩種情況,則以最小的旋轉(zhuǎn)角選擇算法。
此外,將式(5)對(duì)應(yīng)的第一值第二值聯(lián)立求解線(xiàn)性方程組得到:
由于方程(9)和(10)分母是相同的,總是正的,C軸轉(zhuǎn)角可以確定如下:
其中arctan2(y,x)是在范圍內(nèi)的函數(shù)返回值,表示y和x的夾角[16]。
此外,結(jié)合矩陣(6)式兩邊的相應(yīng)參數(shù),產(chǎn)生三個(gè)未知數(shù)Px,Py和Pz。聯(lián)立方程組,設(shè)定程序坐標(biāo)系為工件坐標(biāo)系。因此,可以得到所需的NC數(shù)據(jù)(記為x,y和z),考慮兩個(gè)偏移向量和,并表示為如下:
3.2工作臺(tái)/主軸傾斜型
工作臺(tái)/主軸傾斜型有一個(gè)旋轉(zhuǎn)主軸和一個(gè)旋轉(zhuǎn)軸的工作臺(tái)。圖3分別顯示了C軸和B軸上的兩個(gè)交點(diǎn)RC和RB。交點(diǎn)RC位于C軸上任意點(diǎn),交點(diǎn)B為非正交旋轉(zhuǎn)B軸和刀具的交點(diǎn)。偏移向量是按從原點(diǎn)到交點(diǎn)RC,有效刀具長(zhǎng)度代表交點(diǎn)RB和刀尖中心之間的距離,。由其造型函數(shù)矩陣可以得到坐標(biāo)變換矩陣如下:
圖 圖3工作臺(tái)/主軸傾斜型坐標(biāo)系統(tǒng)
等值式(14)式(15)聯(lián)立得:
結(jié)合參數(shù),可以采用同工作臺(tái)傾斜型的計(jì)算過(guò)程。但要注意的是, NC參考點(diǎn),在此假設(shè)為交點(diǎn)RB。這個(gè)定義是根據(jù)主軸傾斜和工作臺(tái)/主軸傾斜型得來(lái),而且使用的是相同的商業(yè)后處理器程序的軟件包。完整的NC數(shù)據(jù)的分析方程可以表示為:
3.3線(xiàn)性問(wèn)題
從理論上講, CAD / CAM系統(tǒng)生成的CL數(shù)據(jù)是以假設(shè)刀具在連續(xù)兩個(gè)點(diǎn)之間的線(xiàn)性移動(dòng)為基礎(chǔ)。然而,實(shí)際的刀具與工件的運(yùn)動(dòng)軌跡并不是直線(xiàn)和旋轉(zhuǎn)軸移動(dòng)同時(shí)進(jìn)行。彎曲的路徑偏離線(xiàn)性插值的連續(xù)路徑點(diǎn)之間的直線(xiàn)路徑被稱(chēng)為線(xiàn)性問(wèn)題。以下算法可以解決這個(gè)問(wèn)題。
假設(shè),在圖4中 為三個(gè)相鄰的CL數(shù)據(jù)點(diǎn)。矢量Pn的矩陣形式可表示為,其中和組成刀尖的中心位置,和組成刀具的方向。 相應(yīng)的機(jī)床數(shù)控代碼Pn為。由于五軸同時(shí)從當(dāng)前位置Pn移動(dòng)到隨后的位置的Pn+1,每個(gè)軸之間移動(dòng)假定為線(xiàn)性的[18]。因此,實(shí)際的曲線(xiàn)路徑的每個(gè)點(diǎn)可以表示如下:
其中t是一個(gè)虛擬的時(shí)間坐標(biāo)。其中CL數(shù)據(jù)和為正值。例如,工作臺(tái)傾斜型的式(5)、(6)和工作臺(tái)/主軸傾斜型的式(16)、(17)。此外,在理想的線(xiàn)性刀具路徑下每個(gè)點(diǎn)可以決定如下:
理想的線(xiàn)性刀具路徑
實(shí)際曲面刀具路徑
內(nèi)插刀具路徑
圖4多軸加工線(xiàn)性問(wèn)題
圖5后處理程式對(duì)話(huà)框:a工作臺(tái)傾斜型 b工作臺(tái)/主軸傾斜型
圖6工作臺(tái)傾斜型生成NC數(shù)據(jù)對(duì)話(huà)框
之間的距離為偏差。如果最大偏差超過(guò)規(guī)定的公差,應(yīng)將插入到原CL數(shù)據(jù)。理論上,必須采取數(shù)值迭代方法計(jì)算。實(shí)際上,中間點(diǎn),t=0.5,常被選為候選點(diǎn)[10]。將中間點(diǎn)插入后,即可以生成相應(yīng)的數(shù)控代碼。
4、討論
1.非正交旋轉(zhuǎn)軸的主要特征是在同一臺(tái)機(jī)床上水平位置和垂直位置之間的連續(xù)運(yùn)動(dòng)。在當(dāng)前商業(yè)工具機(jī)的配置中,可以由以上方程得出非正交旋轉(zhuǎn)軸傾斜45度。可以拿工作臺(tái)型傾斜是用來(lái)作為一個(gè)例子,方程(5)表示刀具相對(duì)于工件的方向。在初始位置,工作臺(tái)水平,可以確定。非正交旋轉(zhuǎn)軸假定繞x軸旋轉(zhuǎn)θ角使矢量及。將以上條件代入式(5)且,,產(chǎn)生了如下方程:
解得,。因此,當(dāng)工作臺(tái)轉(zhuǎn)動(dòng)角度π,非正交旋轉(zhuǎn)軸B軸轉(zhuǎn)動(dòng)π/4時(shí)工作臺(tái)的處于垂直位置。
圖7工作臺(tái)/主軸傾斜型生成NC數(shù)據(jù)對(duì)話(huà)框
2、非正交坐標(biāo)系的采用提高了五軸工具機(jī)床靈活性。然而,在CL數(shù)據(jù)方面是有限制的。只有在方程(7)顯示的條件滿(mǎn)足時(shí)方能使用。當(dāng)非正交軸設(shè)置在45度角時(shí),的取值范圍在。所以,為負(fù)值時(shí),通過(guò)CAD / CAM軟件生成的CL數(shù)據(jù)無(wú)法進(jìn)行加工。
3、生成的NC數(shù)據(jù)是一個(gè)普遍的形式,它可以運(yùn)用到正交配置中。工作臺(tái)傾斜型就是一個(gè)例子。如果向量W是在X軸方向,且Wx =1 Wy=Wz= 0就是CA工作臺(tái)傾斜性的配置。分析方程中的NC數(shù)據(jù),例如Y軸的值,與文獻(xiàn)[8]中的一致,可以表示如下:
注意,在所列舉的例子中,假設(shè)兩個(gè)旋轉(zhuǎn)軸相交且偏移向量用于推導(dǎo)上述方程。
4、基于和,刀具解可能通過(guò),,且[12, 18]未知的點(diǎn)。該點(diǎn)發(fā)生在且C軸平行于刀具軸時(shí)。正如在圖4所示,如果當(dāng)Pn+1是該點(diǎn)時(shí), 在理論上可以是任意的值,因?yàn)镻n+2是未知的。Pn+2應(yīng)進(jìn)一步確定,以確保的值是在該連續(xù)兩個(gè)點(diǎn)之間的線(xiàn)性變化。 的值可定義為Pn到Pn+2之間的距離。
5、在實(shí)際的多軸加工中進(jìn)給速度控制是一個(gè)重要的問(wèn)題。大多數(shù)控制器,如FANUC公司和Cincinnati Milacron公司采用字符(FRN)和G93代碼來(lái)控制進(jìn)給速度。FRN由工件的進(jìn)給率的所決定。當(dāng)兩個(gè)或兩個(gè)以上線(xiàn)性軸旋轉(zhuǎn)運(yùn)動(dòng)時(shí),路徑長(zhǎng)度的確定變得非常復(fù)雜。在大多數(shù)情況下,實(shí)際的路徑長(zhǎng)度可以充分接理論的線(xiàn)性位移[19]。
5執(zhí)行和核查
5.1軟件實(shí)現(xiàn)
在Windows XP環(huán)境中使用BorlandC ++ 、Builder編程語(yǔ)言和OpenGL圖形庫(kù)。采用一個(gè)半徑為35mm、的半球進(jìn)行加工說(shuō)明。 CL數(shù)據(jù)通過(guò)商業(yè)CAD / CAM軟件與PowerMILL[20]產(chǎn)生。機(jī)床采用工作臺(tái)傾斜型與工作臺(tái)/主軸傾斜型的二種形式的工具機(jī),進(jìn)行了測(cè)試。圖5(a)所示工作臺(tái)傾斜型配置后處理器開(kāi)發(fā)軟件對(duì)話(huà)框。用戶(hù)可以用鼠標(biāo)的旋轉(zhuǎn)放大機(jī)床表面模型。當(dāng)用戶(hù)輸入相關(guān)參數(shù),如偏移向量從C軸中心點(diǎn)開(kāi)始時(shí),系統(tǒng)會(huì)顯示數(shù)字,以幫助用戶(hù)輸入正確的參數(shù),如圖6所示。最后,點(diǎn)擊“文件”菜單打開(kāi)CL數(shù)據(jù),生成NC代碼。圖5(b)和圖7顯示的是工作臺(tái)/主軸傾斜型啟動(dòng)和實(shí)施環(huán)節(jié)的對(duì)話(huà)框,。值得注意的是,設(shè)值長(zhǎng)度是從壓刀尖中心到工作臺(tái)表面。
5.2實(shí)體切削仿真
實(shí)體切削仿真軟件VERICUT是用來(lái)生成數(shù)控加工數(shù)據(jù)。軟件中有可供選擇的原材料,刀具的規(guī)格尺寸,數(shù)控?cái)?shù)據(jù),控制器的類(lèi)型,及物理性能不同的數(shù)控加工工具,它可以用數(shù)控?cái)?shù)據(jù)來(lái)模擬材料去除過(guò)程。工作臺(tái)傾斜型工具機(jī)用產(chǎn)品仿真和成品加工進(jìn)行驗(yàn)證,如圖8所示。相關(guān)參數(shù)如圖6所示。
圖8 工作臺(tái)傾斜型的VERICUT軟件模擬
圖9工作臺(tái)/主軸傾斜類(lèi)型的VERICUT軟件模擬
圖9所示工作臺(tái)/主軸傾斜類(lèi)型的VERICUT軟件模擬。如前所述,根據(jù)圖7,應(yīng)設(shè)置相關(guān)參數(shù)。B軸的向量為。偏移向量從程序原點(diǎn)到旋轉(zhuǎn)刀具軸。
5.3實(shí)驗(yàn)驗(yàn)證
生成的五軸聯(lián)動(dòng)數(shù)控?cái)?shù)據(jù)要進(jìn)一步驗(yàn)證。工作臺(tái)傾斜型五軸加工中心(DECKEL MAHO DMU70改進(jìn)型)配備Heidenhain iTNC530用于半球形工件加工。這項(xiàng)實(shí)驗(yàn)是在下列條件下進(jìn)行:
(1)兩個(gè)球頭直徑為10毫米和4毫米的刀具分別用于粗加工和精加工
(2)主軸轉(zhuǎn)速5000r\min,進(jìn)給速度為1000mm/min
(3)工作臺(tái)采用7075鋁合金材料制造。
應(yīng)該注意的是,本機(jī)床C軸的正方向是刀具沿著Z軸的負(fù)方向。C軸的實(shí)際數(shù)控?cái)?shù)值再式(11)中為負(fù)值。圖10顯示了實(shí)際的加工過(guò)程,揭示正確的后處理程式,能成功生成NC數(shù)據(jù)。
圖10 DECKEL MAHO DMU1070改進(jìn)型機(jī)床的實(shí)際加工實(shí)驗(yàn) a.粗加工 b.精加工
六、結(jié)論
非正交工作臺(tái)和主軸型五軸工具機(jī)床的后處理程序有了一定的發(fā)展。一般的NC數(shù)據(jù)是由齊次坐標(biāo)變換矩陣,正向和逆向運(yùn)動(dòng)學(xué)的分析來(lái)確定的。生成的NC數(shù)據(jù)對(duì)那些旋轉(zhuǎn)軸需要相互交叉和非正交軸的傾斜角度為變量的這類(lèi)機(jī)床是有用的。產(chǎn)生的可變傾斜角能增加派生方程的有效性,從而NC數(shù)據(jù)可降低正交型的配置。該種算法也可以應(yīng)用到線(xiàn)性軸和旋轉(zhuǎn)軸非正交的多功能磨/轉(zhuǎn)機(jī)床中[21],目前這項(xiàng)工作正在進(jìn)行。
致謝 對(duì)中華人民共和國(guó)理事會(huì)NSC95-2221-E-150-101的財(cái)政資助深表感謝。同時(shí)也對(duì)金屬工業(yè)研究發(fā)展中心提供五軸設(shè)備,及對(duì)在臺(tái)灣Delcam公司的Bacchus Yu先生提出的有效建議意見(jiàn)表示感謝。
參考文獻(xiàn)
1.Goode KF, Rockford IL (1983) Tool head having nutating spindle,US Patent No. 4370080
2.Makino (2003) High-Productivity Aerospace Machining Center.MMS Online?, URL: http://www.mmsonline.com/equipment/mcen389.html
3. Ingersol Mastercenter? (2007), URL: http://www.ingersoll.com/ind/mastercenterH.htm
4. Hagiz G (2006) 5-axis machining, URL: http://numeryx.com/cnc/5axes.htm
5.Affouard A, Duc E, Lartigue C, Langeron J-M, Bourdet P (2004)Avoiding 5-axis singularities using tool path deformation. InternationalJournal of Machine Tools and Manufacture 44:415–425
6. Fauvel OR, Vaidyanathan J, Norrie DH (1990) An analysis oflinearization errors in multi-axis APT-based programming systems.Journal of Manufacturing Systems 9(4):353–362
7. Nagasaka M, Takeuchi Y (1996) Generalized post-processor for5-axis control machining based on form shape function. Journalof the Japan Society for Precision Engineering 62(11):1607–1611
8. Lee RS, She CH (1997) Developing a postprocessor for threetypes of five-axis machine tools. International Journal of AdvancedManufacturing Technology 13(9):658–665
9. She CH, Lee RS (2000) A postprocessor based on the kinematicsmodel for general five-axis machine tools. SME Journal ofManufacturing Processes 2(2):131–141
10. Chou HL (1989) Development of an APT universal postprocessorfor multi-axis CNC milling machine tools. Master’s thesis, NorthCarolina State University, USA
11. She CH, Chang CC (2007) Development of a five-axis postprocessorsystem with a nutating head. Journal of MaterialsProcessing Technology 187–188:60–64
12. Sorby K (2007) Inverse kinematics of five-axis machines nearsingular configurations. International Journal of Machine Toolsand Manufacture 47(2):299–306
13. VERICUT? V5.3 User Manual, URL: http://www.cgtech.com
14. Sakamoto S, Inasaki I (1993) Analysis of generating motion forfive-axis machining centers. Transactions of the Japan Society ofMechanical Engineers, Series C. 59(561):1553–1559
15. Deckel Maho, URL: http://www.dmgtaiwan.com
16. Paul RP (1981) Robot Manipulators: Mathematics, Programmingand Control. MIT press, Cambridge, MA
17. Reshetov DN, Portman VT (1988) Accuracy of Machine Tools.ASME press, New York
18. Bohez E, Makhanov SS, Sonthipermpoon K (2000) Adaptivenonlinear tool path optimization for five-axis machining. InternationalJournal of Production Research 38(17):4329–4343
19. Cincinnati Milacron (1994) Programming Manual for CincinnatiMilacron Acramatic 950MC Rel 3.0 Computer NumericalControl. Ohio
20. Delcam, URL: http://www.delcom.com
21. OKUMA MULTUS, URL: http://www.okuma.co.jp/english/