【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內(nèi)文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內(nèi)的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
遼寧科技大學本科生畢業(yè)設(shè)計 第5頁
焊縫無損檢測現(xiàn)狀
[澳大利亞] RJ Ditchburn SK Burke CM Scala
超聲檢測
20世紀60年代,超聲檢測就被作為焊縫檢驗的一種NDT技術(shù)。從那時起,這種技術(shù)就得到廣泛的發(fā)展,日益被人們所接受。因此,超聲檢測現(xiàn)已成為一項重要技術(shù),用來判定很多在役檢驗的焊接結(jié)構(gòu),如海上結(jié)構(gòu)、核工業(yè)及壓力容器工業(yè),以及海洋應用的某一范圍。
在在役檢驗方面,超聲檢測之所以比X射線照相更受歡迎,是由于射線照相的內(nèi)在局限性和應用超聲所獲得的實際利益。如上所述,射線照相在辨別立體缺陷時非常有效,但在檢查或測量平面缺陷,有可能是最嚴重的缺陷類型裂紋時,其能力則有限。超聲波經(jīng)平面和立體缺陷散射,可用于探測這兩種類型缺陷,并測量其尺寸,如果采用適當?shù)姆椒?,超聲甚至能探測出閉合的裂紋。超聲還能容易地給出與缺陷有關(guān)的深度信息,而X射線,還需專門且昂貴的技術(shù)(如CT)才能獲得這些信息。在節(jié)約資金方面,通過提高生產(chǎn)率,超聲檢測比射線照相可獲得更大的利益。90年代,人們對射線安全性的日益關(guān)注嚴重阻礙了X 射線照相的繼續(xù)使用。
在過去的幾十年里,超聲檢驗已從一種單純的人工操作技術(shù),經(jīng)過計算機輔助處理的人工操作技術(shù),到自動掃描儀的使用,最近發(fā)展為焊縫評估用聯(lián)接多個壓電傳感器的全自動系統(tǒng)。對日益完善的系統(tǒng)在缺陷探測方面應用的可靠性研究已形成建立超聲焊縫檢驗可信度的一個重要因素。如對鋼構(gòu)件檢驗方法(PISC) I ,Ⅱ和Ⅲ進行研究的目的是要獲得超聲檢驗在核工業(yè)和壓力容器工業(yè)中的最佳應用。在PISC研究之外,已進行了某些工作來確定檢驗特殊焊縫幾何形狀的可靠方法,包括單面V形坡口焊縫、雙面V形坡口焊縫以及對接焊縫。這些研究中的幾項已用射線照相和超聲檢驗的可靠性作了比較,結(jié)果表明,用超聲探測缺陷的可靠性隨著該系統(tǒng)完善的程度而增大。根據(jù)Lebowitz 和DeNale,該結(jié)果還表明人工操作超聲技術(shù),甚至使用最不完善的超聲方法,對存在的不連續(xù)處的拒收率等于或大于射線照相的拒收率。
超聲檢測焊接結(jié)構(gòu)要求不僅能可靠地探測缺陷,而且能精確地對缺陷定位和測量其大小,使接收/拒收準則能夠正確實施,人工操作的超聲系統(tǒng)通常使用的技術(shù)是20dB衰減(圖la)、6dB衰減或與來自鉆孔的幅度比較。然而,這些技術(shù)都有誤差,這種誤差不僅是由缺陷形狀、方向和位置的影響引起的,而且還由衰減、耦合、分辨力及設(shè)備特征引起。結(jié)合計算機輔助處理的超聲系統(tǒng)使得用于缺陷探測及測量的好方法如聲時衍射法( TOFD)(圖lb)便于實施,在 PISCⅡ中,標準方法加上TOFD,對所要求的缺陷拒收率,可得到近乎完美的結(jié)果。在測量缺陷大小方面,根據(jù)合成的小孔聚焦(SAFT)及其派生方法如 SUPER – SAFT。進行超聲成像的自動超聲系統(tǒng)已取得了重要進展。
(a)20dB衰減技術(shù) (b)TOFD技術(shù)
圖1 超聲測量缺陷尺寸
對于焊縫超聲檢驗可靠方法的開發(fā)要求了解聲波與各種類型焊縫缺陷的相互作用、超聲波在復雜幾何體中的傳播、檢驗某一結(jié)構(gòu)中表面閉合缺陷所引起的特殊問題、復合層和其它顯微組織對超聲波傳播的影響。雖然超聲波在鐵素體和輕質(zhì)合金焊縫中的傳播相對來說不是很復雜,但對奧氏體焊縫的顯微組織已引起特別注意。這些材料對超聲波的衰減很嚴重,由于存在大晶粒散射而使背底噪聲高,除非沿著主要晶軸傳播,否則還導致超聲波束的偏移。因此,最近的研究已直接面向開發(fā)專門的超聲技術(shù)去處理這些復雜情況,特別PISCⅡ,和Ⅲ對超聲波在奧氏體材料中傳播的詳細模擬試驗,已取得了重大進展。將來,這些模型應能更精確地估算特殊缺陷的位置和大小誤差,為奧氏體鋼和奧氏體焊縫鋼檢驗采用改進的規(guī)則奠定基礎(chǔ)。
目前,人們對降低焊縫檢驗成本的需求日益增長。在現(xiàn)代超聲系統(tǒng)中,自動掃描儀的出現(xiàn)、多個探頭的使用及計算機輔助處理通過提高檢驗速度和檢驗的可靠性降低了成本,但使用自動化設(shè)備時,設(shè)備和校準費用增高了。同時、由于近來超聲系統(tǒng)的發(fā)展,分析超聲數(shù)據(jù)的費用有可能提高,因為各種類型的缺陷(甚至很小的缺陷)都能探測到,而不管這些缺陷是否嚴重。對這個問題的解決方法就是改進缺陷嚴重性接收/拒收準則的自動化應用。因此,現(xiàn)在要努力開發(fā)神經(jīng)網(wǎng)絡(luò),使其用于超聲系統(tǒng)中對缺陷類型、尺寸和位置進行分級,得出的結(jié)果符合特定的檢驗規(guī)則。在模擬的焊縫缺陷(已獲得100%正確的缺陷類型分辨力)和真實的焊縫缺陷(使用不同方法獲得約為90%的成功率)研究方面,一些試驗室已獲得非常有價值的結(jié)果。借助于神經(jīng)網(wǎng)絡(luò),接收/拒收準則在自動化應用方面的預備工作也已進行。神經(jīng)網(wǎng)絡(luò)只能在有代表性的數(shù)據(jù)上試用后,才能證明它們是成功的。然而,獲得代表性數(shù)據(jù)的費用很高。一種替代方法,是在網(wǎng)絡(luò)上采用從超聲波與焊縫缺陷相互作用的加強數(shù)學模型產(chǎn)生的數(shù)據(jù)。這些模型是PISC Ⅲ下一個PISC繼續(xù)項目的開發(fā)。在這些數(shù)學模型變得更完善之前,對于焊縫的超聲判定,強調(diào)使用合格的科技人員是有必要的。
今后,進一步優(yōu)化焊縫超聲檢驗仍有很多困難,先進方法如TOFD的應用有可能取得實質(zhì)性的改進,同時,神經(jīng)網(wǎng)絡(luò)的實施還只是個開始。在焊接應用中,改進的超聲產(chǎn)生和探測有多種選擇方法,如使用相控陣、激光技術(shù)(如下所述)和其它特種探頭。在超聲可靠性范圍內(nèi)需考慮其它一些因素,如殘余應力、較高頻率的影響及對真實缺陷而不是模擬缺陷更全面的考慮。
對檢驗的總經(jīng)濟效益也應給予更多的考慮。要獲得最大經(jīng)濟效益就需對所給的某項檢驗選擇最適合的技術(shù),包括使用一種以上的技術(shù)來判定焊接結(jié)構(gòu)的不同部位。例如,磁粉檢驗與超聲結(jié)合快速而經(jīng)濟有效地探測焊縫表面裂紋。新的電磁方法在這種情況下也起著作用(如下面所討論的)。還存在的問題是如何將超聲檢驗技術(shù)的進展補充到焊縫判定規(guī)則中。
在線焊縫檢驗
在自動焊接過程中,焊接工藝的在線監(jiān)測和控制能提高焊縫質(zhì)量并增加產(chǎn)量,通過實時無損評價技術(shù)與焊接工藝的結(jié)合,可達到焊縫的監(jiān)測和控制。另外,如果產(chǎn)生了焊接缺陷,則在這些缺陷被后續(xù)焊道覆蓋前,對這些缺陷進行修補以減少焊后的檢驗和修補。
高質(zhì)量焊縫取決于與焊接準備工作有關(guān)的正確的焊池尺寸、幾何形狀和位置。在線自動焊縫監(jiān)測系統(tǒng)通常具有可提供焊池狀況信息的傳感器。利用這些信息,確定焊池狀況與至少一個臨界焊接參數(shù)(如電流、電壓、焊距位置和傳送速度)間的關(guān)系,通過傳感器的反饋線路調(diào)整焊接工藝(圖3)。該系統(tǒng)可連續(xù)調(diào)節(jié)工藝參數(shù)來維持期望的穩(wěn)定工藝狀態(tài),且不需要操作人員介入。
圖2 描述焊接工藝引入檢測原理示意圖
焊接的動態(tài)特征意味著數(shù)據(jù)采集和處理必須能迅速獲得焊接過程中的有用信息,兩級實時射線照相分析包括快速尋找缺陷區(qū)域,并對缺陷進行仔細辨別和定位的系統(tǒng)已達到這個要求。實時射線照相圖像已用于對接接頭焊縫電弧焊條件的控制;焊池凹陷的實時射線照相圖像和池后焊縫迅速固化圖像的綜合方法可用于焊縫熔透和質(zhì)量控制。
在線超聲傳感已用于確定金屬極氣體電弧焊(GMA)和鎢極氣體保護電弧焊(GTA)焊接工藝的質(zhì)量,這種技術(shù)可實時探測焊池幾何形狀和焊縫缺陷。該技術(shù)評價了焊條處熔化的焊池質(zhì)量和焊條后固化的焊縫金屬質(zhì)量,可探測側(cè)壁不完全熔透和密集氣孔。使用具有92%成功率的專家系統(tǒng)技術(shù)可將這些不連續(xù)與完好焊縫區(qū)分開來,遺憾的是這個專家系統(tǒng)的算法不能成功地識別不連續(xù)的類型。正確辨別密集氣孔的比率為70%,正確辨別側(cè)壁不完全熔化則為63%。Bull 等人已表明GTA和電阻點焊可用超聲法監(jiān)測,并在電阻點焊在線監(jiān)測系統(tǒng)開發(fā)方面有所進展。
使用壓電傳感器和耦合劑因存在耦合介質(zhì)使焊縫不純凈,對生產(chǎn)是不利的,為了解決這個問題,已研制出一種非接觸式超聲系統(tǒng)。該系統(tǒng)用一種受脈沖作用的釹YAG激光來產(chǎn)生超聲波,用電磁聲傳感器(EMAT)接收。
另外,兩種非接觸檢測技術(shù)正在研究過程中,第一種技術(shù)使用雙波長光導纖維傳感器可同時觀察來自焊接過程的紅外線(IR)和紫外線(UV),射線由熱熔池和由光束/氣體相互作用發(fā)出的等離子體產(chǎn)生。這種技術(shù)已成功地用于顯示激光焊中所遇到的干擾。第二種技術(shù)使用錄像圖像在線處理,它可保證GMA焊接中焊縫接頭區(qū)和焊道中心線的冷卻速率,模糊邏輯控制裝置和人工神經(jīng)網(wǎng)絡(luò)可用這個信息來修改工藝參數(shù)。
結(jié)論及今后的工作
近幾年在焊縫NDT技術(shù)方面已取得了重大進展,特別是用超聲和電磁方法測量裂紋尺寸和殘余應力,以及焊接工藝的在線監(jiān)測方面。成本效益與諸多因素有關(guān),如NDT技術(shù)的可靠性、靈敏度、速度和覆蓋面,這些方面的要求導致焊縫自動超聲檢驗系統(tǒng)的應用得以擴大,特別是在核工業(yè)和壓力容器領(lǐng)域。非接觸式NDT技術(shù)已取得迅速發(fā)展,今后在自動數(shù)據(jù)處理的神經(jīng)網(wǎng)絡(luò)不斷發(fā)展的同時,還應提高其檢驗速度。
總之,焊縫NDT特別是在使檢驗成本降至最低而不損壞結(jié)構(gòu)完整性方面,仍有很多難題,通過焊接工程師與NDT專家之間的密切合作,這些難題正在得到解決,既具備NDT知識又具備焊縫生產(chǎn),斷裂力學和結(jié)構(gòu)力學知識,是獲得最佳效果的基礎(chǔ)。