2019-2020年高中數(shù)學(xué) 1.1正弦定理和余弦定理教案1 新人教A版必修5.doc
《2019-2020年高中數(shù)學(xué) 1.1正弦定理和余弦定理教案1 新人教A版必修5.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 1.1正弦定理和余弦定理教案1 新人教A版必修5.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 1.1正弦定理和余弦定理教案1 新人教A版必修5 一、教材依據(jù):人民教育出版社(A版)數(shù)學(xué)必修5第一章 第二節(jié) 二、設(shè)計(jì)思想: 1、教材分析:余弦定理是初中“勾股定理”內(nèi)容的直接延拓,是解三角形這一章知識(shí)的一個(gè)重要定理,揭示了任意三角形邊角之間的關(guān)系,是解三角形的重要工具,余弦定理與平面幾何知識(shí)、向量、三角形有著密切的聯(lián)系。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀(guān)點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。 2、學(xué)情分析:這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了正弦定理及有關(guān)知識(shí)的基礎(chǔ)上,轉(zhuǎn)入對(duì)余弦定理的學(xué)習(xí),此時(shí)學(xué)生已經(jīng)熟悉了探索新知識(shí)的數(shù)學(xué)教學(xué)過(guò)程,具備了一定的分析能力。 3、設(shè)計(jì)理念:由于余弦定理有較強(qiáng)的實(shí)踐性,所以在設(shè)計(jì)本節(jié)課時(shí),創(chuàng)設(shè)了一些數(shù)學(xué)情景,讓學(xué)生從已有的幾何知識(shí)出發(fā),自己去分析、探索和證明。激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣,提高學(xué)生的創(chuàng)新思維能力。 4、教學(xué)指導(dǎo)思想:根據(jù)當(dāng)前學(xué)生的學(xué)習(xí)實(shí)際和本節(jié)課的內(nèi)容特點(diǎn),我采用的是“問(wèn)題教學(xué)法”,精心設(shè)計(jì)教學(xué)內(nèi)容,提出探究性問(wèn)題,經(jīng)過(guò)啟發(fā)、引導(dǎo),從不同的途徑讓學(xué)生自己去分析、探索,從而找到解決問(wèn)題的方法。 三、教學(xué)目標(biāo): 1、知識(shí)與技能: 理解并掌握余弦定理的內(nèi)容,會(huì)用向量法證明余弦定理,能用余弦定理解決一些簡(jiǎn)單的三角度量問(wèn)題 2.過(guò)程與方法: 通過(guò)實(shí)例,體會(huì)余弦定理的內(nèi)容,經(jīng)歷并體驗(yàn)使用余弦定理求解三角形的過(guò)程與方法,發(fā)展用數(shù)學(xué)工具解答現(xiàn)實(shí)生活問(wèn)題的能力。 3.情感、態(tài)度與價(jià)值觀(guān): 探索利用直觀(guān)圖形理解抽象概念,體會(huì)“數(shù)形結(jié)合”的思想。通過(guò)余弦定理的應(yīng)用,感受余弦定理在解決現(xiàn)實(shí)生活問(wèn)題中的意義。 四、教學(xué)重點(diǎn): 通過(guò)對(duì)三角形邊角關(guān)系的探索,證明余弦定理及其推論,并能應(yīng)用它們解三角形及求解有關(guān)問(wèn)題。 五、教學(xué)難點(diǎn):余弦定理的靈活應(yīng)用 六、教學(xué)流程: (一)創(chuàng)設(shè)情境,課題導(dǎo)入: 1、復(fù)習(xí):已知A=,C=,b=16解三角形。(可以讓學(xué)生板練) 2、若將條件C=改成c=8如何解三角形? 設(shè)計(jì)意圖:把研究余弦定理的問(wèn)題和平面幾何中三角形全等判定的方法建立聯(lián)系,溝通新舊知識(shí)的聯(lián)系,引導(dǎo)學(xué)生體會(huì)量化的思想和觀(guān)點(diǎn)。 師生活動(dòng):用數(shù)學(xué)符號(hào)來(lái)表達(dá)“已知三角形的兩邊及其夾角解三角形”:已知△ABC,BC=a,AC=b,和角C,求解c, B,A 引出課題:余弦定理 (二)設(shè)置問(wèn)題,知識(shí)探究 1、探究:我們可以先研究計(jì)算第三邊長(zhǎng)度的問(wèn)題,那么我們又從那些角度研究這個(gè)問(wèn)題能得到一個(gè)關(guān)系式或計(jì)算公式呢? 設(shè)計(jì)意圖:期望能引導(dǎo)學(xué)生從各個(gè)不同的方面去研究、探索得到余弦定理。 師生活動(dòng):從某一個(gè)角度探索并得出余弦定理 2、①考慮用向量的數(shù)量積:如圖 C B ②還可以考慮用解析幾何中的兩點(diǎn)間距離公式來(lái)研究: 引導(dǎo)學(xué)生運(yùn)用此法來(lái)進(jìn)行證明 3、余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍。 (可以讓學(xué)生自己總結(jié),教師補(bǔ)充完整) (三)典型例題剖析: 1、例1:在△ABC中,已知b=2cm,c=2cm,A=1200,解三角形。 教師分析、點(diǎn)撥并板書(shū)證明過(guò)程 總結(jié):已知三角形的兩邊和它們的夾角解三角形,基本思路是先由余弦定理求出第三邊,再由正弦定理求其余各角。 變式引申:在△ABC中,已知b=5,c=5,A=300,解三角形。 2、探究:余弦定理是關(guān)于三角形三邊和一個(gè)角的一個(gè)關(guān)系式,把這個(gè)關(guān)系式作某些變形,是否可以解決其他類(lèi)型的解三角形問(wèn)題? 設(shè)計(jì)意圖:(1)引入余弦定理的推論(2)對(duì)一個(gè)數(shù)學(xué)式子作某種變形,從而得到解決其他類(lèi)型的數(shù)學(xué)問(wèn)題,這是一種基本的研究問(wèn)題的方法。 師生活動(dòng):對(duì)余弦定理作某些變形,研究變形后所得關(guān)系式的應(yīng)用。因此應(yīng)把重點(diǎn)引導(dǎo)到余弦定理的推論上去,即討論已知三邊求角的問(wèn)題。 引入余弦定理的推論:cosA= , cosB=, cosC= 公式作用:(1)、已知三角形三邊,求三角。 (2)、若A為直角,則cosA=0,從而b2+c2=a2 若A為銳角,則 cosA>0, 從而b2+c2>a2 若A為鈍角,則 cosA﹤0, 從而b2+c2﹤a2 先讓學(xué)生自己分析、思索,老師進(jìn)行引導(dǎo)、啟發(fā)和補(bǔ)充,最后師生一起求解。 總結(jié):對(duì)于已知三角形的三邊求三角這種類(lèi)型,解三角形的基本思路是先由余弦定理求出兩角,再用三角形內(nèi)角和定理求出第三角。(可以先讓學(xué)生歸納總結(jié),老師補(bǔ)充) 變式引申:在△ABC中,a:b:c=2::(+1),求A、B、C。 讓學(xué)生板練,師生共同評(píng)判 3、三角形形狀的判定: 例3:在△ABC中,acosA=bcosB,試確定此三角形的形狀。 (教師引導(dǎo)學(xué)生分析、思考,運(yùn)用多種方法求解) 求解思路:判斷三角形的形狀可有兩種思路,一是利用邊之間的關(guān)系來(lái)判定,在運(yùn)算過(guò)程中,盡可能地把角的關(guān)系化為邊的關(guān)系;二是利用角之間的關(guān)系來(lái)判定,將邊化成角。 變式引申:在△ABC中,若(a+b+c)(b+c-a)=3bc,并且sinA=2sinBcosC,判斷△ABC的形狀。 讓學(xué)生板練,發(fā)現(xiàn)問(wèn)題進(jìn)行糾正。 (四)課堂檢測(cè)反饋: 1、已知在△ABC中,b=8,c=3,A=600,則a=( ) A 2 B 4 C 7 D 9 2、在△ABC中,若a=+1,b=-1,c=,則△ABC的最大角的度數(shù)為( ) A 1200 B 900 C 600 D 1500 3、在△ABC中,a:b:c=1::2,則A:B:C=( ) A 1:2:3 B 2:3:1 C 1:3:2 D 3:1:2 4、在不等邊△ABC中,a是最大的邊,若a2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 1.1正弦定理和余弦定理教案1 新人教A版必修5 2019 2020 年高 數(shù)學(xué) 1.1 正弦 定理 余弦 教案 新人 必修
鏈接地址:http://www.hcyjhs8.com/p-2593807.html