2019-2020年高中數學《函數的單調性》教學設計新人教版必修1.doc
《2019-2020年高中數學《函數的單調性》教學設計新人教版必修1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數學《函數的單調性》教學設計新人教版必修1.doc(7頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高中數學《函數的單調性》教學設計新人教版必修1 【教學目標】 1.使學生從形與數兩方面理解函數單調性的概念,初步掌握利用函數圖象和單調性定義判斷、證明函數單調性的方法. 2.通過對函數單調性定義的探究,滲透數形結合數學思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過對函數單調性的證明,提高學生的推理論證能力. 3.通過知識的探究過程培養(yǎng)學生細心觀察、認真分析、嚴謹論證的良好思維習慣,讓學生經歷從具體到抽象,從特殊到一般,從感性到理性的認知過程. 【教學重點】函數單調性的概念、判斷及證明. 【教學難點】歸納抽象函數單調性的定義以及根據定義證明函數的單調性. 【教學方法】教師啟發(fā)講授,學生探究學習. 【教學手段】計算機、投影儀. 【教學過程】 一、創(chuàng)設情境,引入課題 課前布置任務: (1) 由于某種原因,xx年北京奧運會開幕式時間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因. (2) 通過查閱歷史資料研究北京奧運會開幕式當天氣溫變化情況. 課上通過交流,可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數等均開始下降,比較適宜大型國際體育賽事. 下圖是北京市今年8月8日一天24小時內氣溫隨時間變化的曲線圖. 引導學生識圖,捕捉信息,啟發(fā)學生思考. 問題:觀察圖形,能得到什么信息? 預案:(1)當天的最高溫度、最低溫度以及何時達到; (2)在某時刻的溫度; (3)某些時段溫度升高,某些時段溫度降低. 在生活中,我們關心很多數據的變化規(guī)律,了解這些數據的變化規(guī)律,對我們的生活是很有幫助的. 問題:還能舉出生活中其他的數據變化情況嗎? 預案:水位高低、燃油價格、股票價格等. 歸納:用函數觀點看,其實就是隨著自變量的變化,函數值是變大還是變小. 〖設計意圖〗由生活情境引入新課,激發(fā)興趣. 二、歸納探索,形成概念 對于自變量變化時,函數值是變大還是變小,初中同學們就有了一定的認識,但是沒有嚴格的定義,今天我們的任務首先就是建立函數單調性的嚴格定義. 1.借助圖象,直觀感知 問題1:分別作出函數的圖象,并且觀察自變量變化時,函數值有什么變化規(guī)律? 預案:(1)函數在整個定義域內 y隨x的增大而增大;函數在整個定義域內 y隨x的增大而減?。? (2)函數在上 y隨x的增大而增大,在上y隨x的增大而減?。? (3)函數在上 y隨x的增大而減小,在上y隨x的增大而減小. 引導學生進行分類描述 (增函數、減函數).同時明確函數的單調性是對定義域內某個區(qū)間而言的,是函數的局部性質. 問題2:能不能根據自己的理解說說什么是增函數、減函數? 預案:如果函數在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數在該區(qū)間上為增函數;如果函數在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數在該區(qū)間上為減函數. 教師指出:這種認識是從圖象的角度得到的,是對函數單調性的直觀,描述性的認識. 〖設計意圖〗從圖象直觀感知函數單調性,完成對函數單調性的第一次認識. 2.探究規(guī)律,理性認識 問題1:下圖是函數的圖象,能說出這個函數分別在哪個區(qū)間為增函數和減函數嗎? 學生的困難是難以確定分界點的確切位置. 通過討論,使學生感受到用函數圖象判斷函數單調性雖然比較直觀,但有時不夠精確,需要結合解析式進行嚴密化、精確化的研究. 〖設計意圖〗使學生體會到用數量大小關系嚴格表述函數單調性的必要性. 問題2:如何從解析式的角度說明在為增函數? 預案: (1) 在給定區(qū)間內取兩個數,例如1和2,因為12<22,所以在為增函數. (2) 仿(1),取很多組驗證均滿足,所以在為增函數. (3) 任取,因為,即,所以在為增函數. 對于學生錯誤的回答,引導學生分別用圖形語言和文字語言進行辨析,使學生認識到問題的根源在于自變量不可能被窮舉,從而引導學生在給定的區(qū)間內任意取兩個自變量. 〖設計意圖〗把對單調性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調性的方法,為證明單調性做好鋪墊. 3.抽象思維,形成概念 問題:你能用準確的數學符號語言表述出增函數的定義嗎? 師生共同探究,得出增函數嚴格的定義,然后學生類比得出減函數的定義. (1)板書定義 (2)鞏固概念 判斷題: ①. ②若函數. ③若函數在區(qū)間和(2,3)上均為增函數,則函數在區(qū)間(1,3)上為增函數. ④因為函數在區(qū)間上都是減函數,所以在上是減函數. 通過判斷題,強調三點: ①單調性是對定義域內某個區(qū)間而言的,離開了定義域和相應區(qū)間就談不上單調性. ②對于某個具體函數的單調區(qū)間,可以是整個定義域(如一次函數),可以是定義域內某個區(qū)間(如二次函數),也可以根本不單調(如常函數). ③函數在定義域內的兩個區(qū)間A,B上都是增(或減)函數,一般不能認為函數在上是增(或減)函數. 思考:如何說明一個函數在某個區(qū)間上不是單調函數? 〖設計意圖〗讓學生由特殊到一般,從具體到抽象歸納出單調性的定義,通過對判斷題的辨析,加深學生對定義的理解,完成對概念的第三次認識. 三、掌握證法,適當延展 例 證明函數在上是增函數. 1.分析解決問題 針對學生可能出現(xiàn)的問題,組織學生討論、交流. 證明:任取, 設元 求差 變形 , 斷號 ∴ ∴即 ∴函數在上是增函數. 定論 2.歸納解題步驟 引導學生歸納證明函數單調性的步驟:設元、作差、變形、斷號、定論. 練習:證明函數在上是增函數. 問題:要證明函數在區(qū)間上是增函數,除了用定義來證,如果可以證得對任意的,且有可以嗎? 引導學生分析這種敘述與定義的等價性.讓學生嘗試用這種等價形式證明函數在上是增函數. 〖設計意圖〗初步掌握根據定義證明函數單調性的方法和步驟.等價形式進一步發(fā)展可以得到導數法,為用導數方法研究函數單調性埋下伏筆. 四、歸納小結,提高認識 學生交流在本節(jié)課學習中的體會、收獲,交流學習過程中的體驗和感受,師生合作共同完成小結. 1.小結 (1) 概念探究過程:直觀到抽象、特殊到一般、感性到理性. (2) 證明方法和步驟:設元、作差、變形、斷號、定論. (3) 數學思想方法和思維方法:數形結合,等價轉化,類比等. 2.作業(yè) 書面作業(yè):課本第60頁習題2.3 第4,5,6題. 課后探究: (1) 證明:函數在區(qū)間上是增函數的充要條件是對任意的,且有. (2) 研究函數的單調性,并結合描點法畫出函數的草圖. 《函數的單調性》教學設計說明 一、教學內容的分析 函數的單調性是學生在了解函數概念后學習的函數的第一個性質,是函數學習中第一個用數學符號語言刻畫的概念,為進一步學習函數其它性質提供了方法依據. 對于函數單調性,學生的認知困難主要在兩個方面:(1)要求用準確的數學符號語言去刻畫圖象的上升與下降,這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生是比較困難的;(2)單調性的證明是學生在函數內容中首次接觸到的代數論證內容,而學生在代數方面的推理論證能力是比較薄弱的.根據以上的分析和教學大綱的要求,確定了本節(jié)課的重點和難點. 二、教學目標的確定 根據本課教材的特點、教學大綱對本節(jié)課的教學要求以及學生的認知水平,從三個不同的方面確定了教學目標,重視單調性概念的形成過程和對概念本質的認識;強調判斷、證明函數單調性的方法的落實以及數形結合思想的滲透;突出語言表達能力、推理論證能力的培養(yǎng)和良好思維習慣的養(yǎng)成. 三、教學方法和教學手段的選擇 本節(jié)課是函數單調性的起始課,采用教師啟發(fā)講授,學生探究學習的教學方法,通過創(chuàng)設情境,引導探究,師生交流,最終形成概念,獲得方法.本節(jié)課使用了多媒體投影和計算機來輔助教學,目的是充分發(fā)揮其快捷、生動、形象的特點,為學生提供直觀感性的材料,有助于學生對問題的理解和認識. 四、教學過程的設計 為達到本節(jié)課的教學目標,突出重點,突破難點,教學上采取了以下的措施: (1)在探索概念階段, 讓學生經歷從直觀到抽象、從特殊到一般、從感性到理性的認知過程,完成對單調性定義的三次認識,使得學生對概念的認識不斷深入. (2)在應用概念階段,通過對證明過程的分析,幫助學生掌握用定義證明函數單調性的方法和步驟. (3)考慮到我校學生數學基礎較好、思維較為活躍的特點,對判斷方法進行適當的延展,加深對定義的理解,同時也為用導數研究單調性埋下伏筆.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 函數的單調性 2019 2020 年高 數學 函數 調性 教學 設計 新人 必修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.hcyjhs8.com/p-2599879.html