2019-2020年高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(1)完整講義(學(xué)生版).doc
《2019-2020年高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(1)完整講義(學(xué)生版).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(1)完整講義(學(xué)生版).doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(1)完整講義(學(xué)生版) 1.橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡(或集合)叫做橢圓. 這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距. 2.橢圓的標(biāo)準(zhǔn)方程: ①,焦點(diǎn)是,,且. ②,焦點(diǎn)是,,且. 3.橢圓的幾何性質(zhì)(用標(biāo)準(zhǔn)方程研究): ⑴范圍:,; ⑵對(duì)稱(chēng)性:以軸、軸為對(duì)稱(chēng)軸,以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心,橢圓的對(duì)稱(chēng)中心又叫做橢圓的中心; ⑶橢圓的頂點(diǎn):橢圓與它的對(duì)稱(chēng)軸的四個(gè)交點(diǎn),如圖中的; ⑷長(zhǎng)軸與短軸:焦點(diǎn)所在的對(duì)稱(chēng)軸上,兩個(gè)頂點(diǎn)間的線段稱(chēng)為橢圓的長(zhǎng)軸,如圖中線段的;另一對(duì)頂點(diǎn)間的線段叫做橢圓的短軸,如圖中的線段. ⑸橢圓的離心率:,焦距與長(zhǎng)軸長(zhǎng)之比,,越趨近于,橢圓越扁; 反之,越趨近于,橢圓越趨近于圓. 4.直線:與圓錐曲線:的位置關(guān)系: 直線與圓錐曲線的位置關(guān)系可分為:相交、相切、相離.對(duì)于拋物線來(lái)說(shuō),平行于對(duì)稱(chēng)軸的直線與拋物線相交于一點(diǎn),但并不是相切;對(duì)于雙曲線來(lái)說(shuō),平行于漸近線的直線與雙曲線只有一個(gè)交點(diǎn),但并不相切.這三種位置關(guān)系的判定條件可歸納為: 設(shè)直線:,圓錐曲線:,由 消去(或消去)得:. 若,,相交;相離;相切. 若,得到一個(gè)一次方程:①為雙曲線,則與雙曲線的漸近線平行;②為拋物線,則與拋物線的對(duì)稱(chēng)軸平行. 因此直線與拋物線、雙曲線有一個(gè)公共點(diǎn)是直線與拋物線、雙曲線相切的必要條件,但不是充分條件. 5.連結(jié)圓錐曲線上兩個(gè)點(diǎn)的線段稱(chēng)為圓錐曲線的弦. 求弦長(zhǎng)的一種求法是將直線方程與圓錐曲線的方程聯(lián)立,求出兩交點(diǎn)的坐標(biāo),然后運(yùn)用兩點(diǎn)間的距離公式來(lái)求; 另外一種求法是如果直線的斜率為,被圓錐曲線截得弦兩端點(diǎn)坐標(biāo)分別為,則弦長(zhǎng)公式為. 兩根差公式: 如果滿足一元二次方程:, 則(). 6.直線與圓錐曲線問(wèn)題的常用解題思路有: ①?gòu)姆匠痰挠^點(diǎn)出發(fā),利用根與系數(shù)的關(guān)系來(lái)進(jìn)行討論,這是用代數(shù)方法來(lái)解決幾何問(wèn)題的基礎(chǔ).要重視通過(guò)設(shè)而不求與弦長(zhǎng)公式簡(jiǎn)化計(jì)算,并同時(shí)注意在適當(dāng)時(shí)利用圖形的平面幾何性質(zhì). ②以向量為工具,利用向量的坐標(biāo)運(yùn)算解決與中點(diǎn)、弦長(zhǎng)、角度相關(guān)的問(wèn)題. 典例分析 【例1】 直線與橢圓交于不同兩點(diǎn)和,且(其中為坐標(biāo)原點(diǎn)),求的值. 【例2】 在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓有兩個(gè)不同的交點(diǎn)和. ⑴求的取值范圍; ⑵設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由. 【例3】 已知,直線,橢圓,, 分別為橢圓的左、右焦點(diǎn). ⑴當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程; ⑵設(shè)直線與橢圓交于,兩點(diǎn),,的重心分別為,.若原點(diǎn)在以線段為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍. 【例4】 已知橢圓短軸的一個(gè)端點(diǎn),離心率.過(guò)作直線與橢圓交于另一點(diǎn),與軸交于點(diǎn)(不同于原點(diǎn)),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,直線交軸于點(diǎn). ⑴求橢圓的方程; ⑵求的值. 【例5】 已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且離心率滿足:成等比數(shù)列. ⑴求橢圓方程; ⑵是否存在直線,使與橢圓交于不同的兩點(diǎn)、,且線段恰被直線平分,若存在,求出的傾斜角的范圍;若不存在,請(qǐng)說(shuō)明理由. 【例6】 直線與橢圓交于、兩點(diǎn),記的面積為, ⑴求在的條件下,的最大值; ⑵當(dāng),時(shí),求直線的方程. 【例7】 已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)在橢圓上且. ⑴求橢圓的方程; ⑵若平行于的直線和橢圓交于兩個(gè)不同點(diǎn),求面積的最大值,并求此時(shí)直線的方程. 【例8】 如圖,點(diǎn)是橢圓短軸的下端點(diǎn).過(guò)作斜率為的直線交橢圓于,點(diǎn)在軸上,且軸,. ⑴若點(diǎn)坐標(biāo)為,求橢圓方程; ⑵若點(diǎn)坐標(biāo)為,求的取值范圍. 【例9】 已知橢圓的焦點(diǎn)是,,點(diǎn)在橢圓上且滿足. ⑴ 求橢圓的標(biāo)準(zhǔn)方程; ⑵ 設(shè)直線與橢圓的交點(diǎn)為,. ?。┣笫沟拿娣e為的點(diǎn)的個(gè)數(shù); ⅱ)設(shè)為橢圓上任一點(diǎn),為坐標(biāo)原點(diǎn),,求的值. 【例10】 已知橢圓的離心率為. ⑴若原點(diǎn)到直線的距離為,求橢圓的方程; ⑵設(shè)過(guò)橢圓的右焦點(diǎn)且傾斜角為的直線和橢圓交于兩點(diǎn). i)當(dāng),求的值; ii)對(duì)于橢圓上任一點(diǎn),若,求實(shí)數(shù)滿足的關(guān)系式. 【例11】 已知橢圓的左右焦點(diǎn)分別為.在橢圓中有一內(nèi)接三角形,其頂點(diǎn)的坐標(biāo),所在直線的斜率為. ⑴求橢圓的方程; ⑵當(dāng)?shù)拿娣e最大時(shí),求直線的方程. 【例12】 已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,,且,點(diǎn)在橢圓上. ⑴求橢圓的方程; ⑵過(guò)的直線與橢圓相交于、兩點(diǎn),且的面積為,求以為圓心且與直線相切的圓的方程. 【例13】 已知橢圓的對(duì)稱(chēng)中心為原點(diǎn),焦點(diǎn)在軸上,離心率為,且點(diǎn)在該橢圓上. ⑴求橢圓的方程; ⑵過(guò)橢圓的左焦點(diǎn)的直線與橢圓相交于、兩點(diǎn),若的面積為,求圓心在原點(diǎn)且與直線相切的圓的方程. 【例14】 橢圓:的離心率為,長(zhǎng)軸端點(diǎn)與短軸端點(diǎn)間的距離為. ⑴求橢圓的方程; ⑵設(shè)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),若為直角三角形,求直線的斜率. 【例15】 已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn). ⑴求橢圓的方程; ⑵是否存直線,滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由. 【例16】 已知橢圓的左右焦點(diǎn)分別為,,離心率,右準(zhǔn)線方程為. ⑴求橢圓的標(biāo)準(zhǔn)方程;(準(zhǔn)線方程) ⑵過(guò)點(diǎn)的直線與該橢圓交于,兩點(diǎn),且,求直線的方程. 【例17】 設(shè)橢圓 的左、右焦點(diǎn)分別為、,離心率, 、是直線:上的兩個(gè)動(dòng)點(diǎn),且. ⑴若,求、的值. ⑵證明:當(dāng)取最小值時(shí),與共線. 【例18】 已知橢圓,過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、. ⑴若與軸相交于點(diǎn),且是的中點(diǎn),求直線的方程; ⑵設(shè)為橢圓上一點(diǎn),且(為坐標(biāo)原點(diǎn)),求當(dāng)時(shí),實(shí)數(shù)的取值范圍. 【例19】 已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為,若. ⑴求此橢圓的方程; ⑵點(diǎn)是橢圓的右頂點(diǎn),直線與橢圓交于、兩點(diǎn)(在第一象限內(nèi)),又、是此橢圓上兩點(diǎn),并且滿足,求證:向量與共線. 【例20】 一束光線從點(diǎn)出發(fā),經(jīng)直線:上一點(diǎn)反射后,恰好穿過(guò)點(diǎn), ⑴求點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)的坐標(biāo); ⑵求以、為焦點(diǎn)且過(guò)點(diǎn)的橢圓的方程; ⑶設(shè)直線與橢圓的兩條準(zhǔn)線分別交于、兩點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn),且不為、,求點(diǎn)到的距離與到橢圓右準(zhǔn)線的距離之比的最小值,并求取得最小值時(shí)點(diǎn)的坐標(biāo). 【例21】 已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)和上頂點(diǎn).橢圓的右頂點(diǎn)為.點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線,與直線分別交于兩點(diǎn). ⑴求橢圓的方程; ⑵求線段的長(zhǎng)度的最小值. ⑶當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù);若不存在,說(shuō)明理由.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓1完整講義學(xué)生版 2019 2020 年高 數(shù)學(xué) 直線 圓錐曲線 板塊 橢圓 完整 講義 學(xué)生
鏈接地址:http://www.hcyjhs8.com/p-2614396.html