2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第1講 隨機(jī)事件的概率教案 理 新人教版.doc
《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第1講 隨機(jī)事件的概率教案 理 新人教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第1講 隨機(jī)事件的概率教案 理 新人教版.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第1講 隨機(jī)事件的概率教案 理 新人教版 【xx年高考會這樣考】 1.隨機(jī)事件的概率在高考中多以選擇題、填空題的形式考查,也時常在解答題中出現(xiàn),應(yīng)用題也是??碱}型,并且常與統(tǒng)計知識放在一塊考查. 2.借助古典概型考查互斥事件、對立事件的概率求法. 【復(fù)習(xí)指導(dǎo)】 隨機(jī)事件的概率常與古典概型、互斥、對立事件、統(tǒng)計等相結(jié)合進(jìn)行綜合考查,對事件類型的準(zhǔn)確判斷和對概率運算公式的熟練掌握是解題的基礎(chǔ),因此,復(fù)習(xí)時要通過練習(xí)不斷強(qiáng)化對事件類型的理解和公式的掌握,弄清各事件類型的特點與本質(zhì)區(qū)別,準(zhǔn)確判斷事件的類型是解題的關(guān)鍵. 基礎(chǔ)梳理 1.隨機(jī)事件和確定事件 (1)在條件S下,一定會發(fā)生的事件叫做相對于條件S的必然事件. (2)在條件S下,一定不會發(fā)生的事件叫做相對于條件S的不可能事件. (3)必然事件與不可能事件統(tǒng)稱為確定事件. (4)在條件S下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件. (5)確定事件和隨機(jī)事件統(tǒng)稱為事件,一般用大寫字母A,B,C…表示. 2.頻率與概率 (1)在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率. (2)對于給定的隨機(jī)事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率,簡稱為A的概率. 3.互斥事件與對立事件 (1)互斥事件:若A∩B為不可能事件(A∩B=?),則稱事件A與事件B互斥,其含義是:事件A與事件B在任何一次試驗中不會同時發(fā)生. (2)對立事件:若A∩B為不可能事件,而A∪B為必然事件,那么事件A與事件B互為對立事件,其含義是:事件A與事件B在任何一次試驗中有且僅有一個發(fā)生. 4.概率的幾個基本性質(zhì) (1)概率的取值范圍:0≤P(A)≤1. (2)必然事件的概率:P(A)=1. (3)不可能事件的概率:P(A)=0. (4)互斥事件的概率加法公式: ①P(A∪B)=P(A)+P(B)(A,B互斥). ②P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)(A1,A2,…,An彼此互斥). (5)對立事件的概率:P()=1-P(A). 一條規(guī)律 互斥事件與對立事件都是兩個事件的關(guān)系,互斥事件是不可能同時發(fā)生的兩個事件,而對立事件除要求這兩個事件不同時發(fā)生外,還要求二者之一必須有一個發(fā)生,因此,對立事件是互斥事件的特殊情況,而互斥事件未必是對立事件. 兩種方法 求復(fù)雜的互斥事件的概率一般有兩種方法: (1)直接法:將所求事件的概率分解為一些彼此互斥的事件的概率的和,運用互斥事件的求和公式計算; (2)間接法:先求此事件的對立事件的概率,再用公式P(A)=1-P(),即運用逆向思維(正難則反),特別是“至多”、“至少”型題目,用間接法就顯得比較簡便. 雙基自測 1.(人教A版教材習(xí)題改編)將一枚硬幣向上拋擲10次,其中“正面向上恰有5次”是( ). A.必然事件 B.隨機(jī)事件 C.不可能事件 D.無法確定 答案 B 2.在n次重復(fù)進(jìn)行的試驗中,事件A發(fā)生的頻率為,當(dāng)n很大時,P(A)與的關(guān)系是( ). A.P(A)≈ B.P(A)< C.P(A)> D.P(A)= 解析 事件A發(fā)生的概率近似等于該頻率的穩(wěn)定值. 答案 A 3.(xx蘭州月考)從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是( ). A.至少有一個紅球與都是紅球 B.至少有一個紅球與都是白球 C.至少有一個紅球與至少有一個白球 D.恰有一個紅球與恰有二個紅球 解析 對于A中的兩個事件不互斥,對于B中兩個事件互斥且對立,對于C中兩個事件不互斥,對于D中的兩個互斥而不對立. 答案 D 4.(xx陜西)甲乙兩人一起去游“xx西安世園會”,他們約定,各自獨立地從1到6號景點中任選4個進(jìn)行游覽,每個景點參觀1小時,則最后一小時他們同在一個景點的概率是( ). A. B. C. D. 解析 若用{1,2,3,4,5,6}代表6處景點,顯然甲、乙兩人選擇結(jié)果為{1,1}、{1,2}、{1,3}、…、{6,6},共36種;其中滿足題意的“同一景點相遇”包括{1,1}、{2,2}、{3,3}、…、{6,6},共6個基本事件,所以所求的概率值為. 答案 D 5.(xx湖北)在30瓶飲料中,有3瓶已過了保質(zhì)期.從這30瓶飲料中任取2瓶,則至少取到1瓶已過保質(zhì)期飲料的概率為________(結(jié)果用最簡分?jǐn)?shù)表示). 解析 所取的2瓶中都是不過期的飲料的概率為P==,則至少有1瓶為已過保質(zhì)期飲料的概率=1-P=. 答案 考向一 互斥事件與對立事件的判定 【例1】?判斷下列給出的每對事件,是否為互斥事件,是否為對立事件,并說明理由.從40張撲克牌(紅桃、黑桃、方塊、梅花點數(shù)從1~10各10張)中,任取一張. (1)“抽出紅桃”與“抽出黑桃”; (2)“抽出紅色牌”與“抽出黑色牌”; (3)“抽出的牌點數(shù)為5的倍數(shù)”與“抽出的牌點數(shù)大于9”. [審題視點] 可用集合的觀點判斷. 解 (1)是互斥事件,不是對立事件. 原因是:從40張撲克牌中任意抽取1張,“抽出紅桃”與“抽出黑桃”是不可能同時發(fā)生的,所以是互斥事件,但是,不能保證其中必有一個發(fā)生,這是由于還有可能抽出“方塊”或者“梅花”,因此,二者不是對立事件. (2)既是互斥事件,又是對立事件. 原因是:從40張撲克牌中,任意抽取1張.“抽出紅色牌”與“抽出黑色牌”兩個事件不可能同時發(fā)生,但其中必有一個發(fā)生,所以它們既是互斥事件,又是對立事件. (3)不是互斥事件,也不是對立事件. 原因是:從40張撲克牌中任意抽取1張.“抽出的牌點數(shù)為5的倍數(shù)”與“抽出的牌點數(shù)大于9”這兩個事件可能同時發(fā)生,如抽得點數(shù)為10,因此,二者不是互斥事件,當(dāng)然不可能是對立事件. 對互斥事件要把握住不能同時發(fā)生,而對于對立事件除不能同時發(fā)生外,其并事件應(yīng)為必然事件,這些也可類比集合進(jìn)行理解,具體應(yīng)用時,可把所有試驗結(jié)果寫出來,看所求事件包含哪幾個試驗結(jié)果,從而斷定所給事件的關(guān)系. 【訓(xùn)練1】 一個均勻的正方體的玩具的各個面上分別標(biāo)以數(shù)字1,2,3,4,5,6.將這個玩具向上拋擲1次,設(shè)事件A表示向上的一面出現(xiàn)奇數(shù)點,事件B表示向上的一面出現(xiàn)的點數(shù)不超過3,事件C表示向上的一面出現(xiàn)的點數(shù)不小于4,則( ). A.A與B是互斥而非對立事件 B.A與B是對立事件 C.B與C是互斥而非對立事件 D.B與C是對立事件 解析 根據(jù)互斥事件與對立事件的意義作答,A∩B={出現(xiàn)點數(shù)1或3},事件A,B不互斥更不對立;B∩C=?,B∪C=Ω,故事件B,C是對立事件. 答案 D 考向二 隨機(jī)事件的概率與頻率 【例2】?(xx湖南)某河流上的一座水力發(fā)電站,每年六月份的發(fā)電量Y(單位:萬千瓦時)與該河上游在六月份的降雨量X(單位:毫米)有關(guān).據(jù)統(tǒng)計,當(dāng)X=70時,Y=460;X每增加10,Y增加5.已知近20年X的值為:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (1)完成如下的頻率分布表: 近20年六月份降雨量頻率分布表 降雨量 70 110 140 160 200 220 頻率 (2)假定今年六月份的降雨量與近20年六月份降雨量的分布規(guī)律相同,并將頻率視為概率,求今年六月份該水力發(fā)電站的發(fā)電量低于490(萬千瓦時)或超過530(萬千瓦時)的概率. [審題視點] 第一問中的統(tǒng)計表是降雨量的統(tǒng)計表,只要根據(jù)給出的數(shù)據(jù)進(jìn)行統(tǒng)計計算即可;第二問中根據(jù)給出的X,Y的函數(shù)關(guān)系,求出Y<490或者Y>530對應(yīng)的X的范圍,結(jié)合第一問的概率分布情況求解,或者求解其對立事件的概率. 解 (1)在所給數(shù)據(jù)中,降雨量為110毫米的有3個,為160毫米的有7個,為200毫米的有3個.故近20年六月份降雨量頻率分布表為 降雨量 70 110 140 160 200 220 頻率 (2)由已知得Y=+425,故P(“發(fā)電量低于490萬千瓦時或超過530萬千瓦時”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=++=. 故今年六月份該水力發(fā)電站的發(fā)電量低于490(萬千瓦時)或超過530(萬千瓦時)的概率為. 概率可看成頻率在理論上的穩(wěn)定值,它從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小,它是頻率的科學(xué)抽象,當(dāng)試驗次數(shù)越來越多時頻率向概率靠近,只要次數(shù)足夠多,所得頻率就近似地當(dāng)作隨機(jī)事件的概率. 【訓(xùn)練2】 某市統(tǒng)計的xx~xx年新生嬰兒數(shù)及其中男嬰數(shù)(單位:人)見下表: 時間 xx年 xx年 xx年 xx年 新生嬰兒數(shù) 21 840 23 070 20 094 19 982 男嬰數(shù) 11 453 12 031 10 297 10 242 (1)試計算男嬰各年的出生頻率(精確到0.001); (2)該市男嬰出生的概率約是多少? 解 (1)xx年男嬰出生的頻率為fn(A)==≈0.524. 同理可求得xx年、xx年和xx年男嬰出生的頻率分別約為0.521、0.512、0.513. (2)由以上計算可知,各年男嬰出生的頻率在0.51~0.53之間,所以該市男嬰出生的概率約為0.52. 考向三 互斥事件、對立事件的概率 【例3】?據(jù)統(tǒng)計,某食品企業(yè)在一個月內(nèi)被消費者投訴次數(shù)為0,1,2的概率分別為0.4,0.5,0.1. (1)求該企業(yè)在一個月內(nèi)被消費者投訴不超過1次的概率; (2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率. [審題視點] (1)根據(jù)互斥事件,第(1)問可轉(zhuǎn)化為求被消費者投訴0次和1次的概率和. (2)第(2)問可轉(zhuǎn)化為求以下三種情形的概率和:①1,2月份各被投訴1次;②1,2月份各被投訴0,2次;③1,2月份各被投訴2,0次. 解 法一 (1)設(shè)事件A表示“一個月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個月內(nèi)被投訴的次數(shù)為1”, ∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9. (2)設(shè)事件Ai表示“第i個月被投訴的次數(shù)為0”,事件Bi表示“第i個月被投訴的次數(shù)為1”,事件Ci表示“第i個月被投訴的次數(shù)為2”,事件D表示“兩個月內(nèi)共被投訴2次”. ∴P(Ai)=0.4,P(Bi)=0.5,P(Ci)=0.1(i=1,2), ∵兩個月中,一個月被投訴2次,另一個月被投訴0次的概率為P(A1C2+A2C1), 一、二月份均被投訴1次的概率為P(B1B2), ∴P(D)=P(A1C2+A2C1)+P(B1B2)=P(A1C2)+P(A2C1)+P(B1B2), 由事件的獨立性得 P(D)=0.40.1+0.10.4+0.50.5=0.33. 法二 (1)設(shè)事件A表示“一個月內(nèi)被投訴2次”,事件B表示“一個月內(nèi)被投訴的次數(shù)不超過1次”. ∵P(A)=0.1,∴P(B)=1-P(A)=1-0.1=0.9. (2)同法一. 本題主要考查隨機(jī)事件,互斥事件有一個發(fā)生的概率及相互獨立事件同時發(fā)生的概率;實際生活中的概率問題,在閱讀理解的基礎(chǔ)上,利用互斥事件分類,有時還借助對立事件尋求間接求解問題的捷徑,這類問題重在考查學(xué)生思維的靈活性和解決實際問題的能力. 【訓(xùn)練3】 某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,1 000張獎券為一個開獎單位,設(shè)特等獎1個,一等獎10個,二等獎50個.設(shè)1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求: (1)P(A),P(B),P(C); (2)1張獎券的中獎概率; (3)1張獎券不中特等獎且不中一等獎的概率. 解 (1)P(A)=,P(B)==,P(C)==. 故事件A,B,C的概率分別為,,. (2)1張獎券中獎包含中特等獎、一等獎、二等獎.設(shè)“1張獎券中獎”這個事件為M,則M=A∪B∪C.∵A、B、C兩兩互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)==. 故1張獎券的中獎概率為. (3)設(shè)“1張獎券不中特等獎且不中一等獎”為事件N,則事件N與“1張獎券中特等獎或中一等獎”為對立事件, ∴P(N)=1-P(A∪B)=1-=. 故1張獎券不中特等獎且不中一等獎的概率為. 難點突破24——事件對立與互斥的辨別問題 對事件的互斥性與對立性的辨別,在解題中要根據(jù)問題的具體情況作出準(zhǔn)確的判斷.互斥事件是不可能同時發(fā)生的兩個事件,其概率滿足加法公式,即若A,B互斥,則P(A+B)=P(A)+P(B);對立事件是必然有一個發(fā)生的兩個互斥事件,也就是說對立的兩個事件首先必須是互斥的,而且這兩個事件之和是一個必然事件,即一個事件A與它的對立事件的概率之間有關(guān)系式P(A)+P()=1,用好這個關(guān)系對解決概率問題是非常有用的,它往往能使復(fù)雜的問題簡單化. 【示例1】? (xx蘇州模擬)甲:A1,A2是互斥事件;乙:A1,A2是對立事件,那么( ). A.甲是乙的充分但不必要條件 B.甲是乙的必要但不充分條件 C.甲是乙的充要條件 D.甲既不是乙的充分條件,也不是乙的必要條件 【示例2】? 拋擲一枚均勻的正方體骰子(各面分別標(biāo)有數(shù)字1、 2、3、4、5、6),事件A表示“朝上一面的數(shù)是奇數(shù)”,事件B表示“朝上一面的數(shù)不超過3”,求P(A∪B).- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機(jī)變量及其分布 第1講隨機(jī)事件的概率教案 新人教版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 第十二 概率 隨機(jī)變量 及其 分布 隨機(jī) 事件
鏈接地址:http://www.hcyjhs8.com/p-2654319.html