2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第3講 推理與證明教案.doc
《2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第3講 推理與證明教案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第3講 推理與證明教案.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第3講 推理與證明教案 自主學(xué)習(xí)導(dǎo)引 真題感悟 1.(xx江西)觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10= A.28 B.76 C.123 D.199 解析 觀察規(guī)律,歸納推理. 從給出的式子特點觀察可推知,等式右端的值,從第三項開始,后一個式子的右端值等于它前面兩個式子右端值的和,照此規(guī)律,則a10+b10=123. 答案 C 2.(xx福建)某地區(qū)規(guī)劃道路建設(shè),考慮道路鋪設(shè)方案.方案設(shè)計圖中,點表示城市,兩點之間連線表示兩城市間可鋪設(shè)道路,連線上數(shù)據(jù)表示兩城市間鋪設(shè)道路的費用,要求從任一城市都能到達其余各城市,并且鋪設(shè)道路的總費用最?。纾涸谌齻€城市道路設(shè)計中,若城市間可鋪設(shè)道路的線路圖如圖(1),則最優(yōu)設(shè)計方案如圖(2),此時鋪設(shè)道路的最小總費用為10. 現(xiàn)給出該地區(qū)可鋪設(shè)道路的線路圖如圖(3),則鋪設(shè)道路的最小總費用為________. 解析 根據(jù)題目中圖(3)給出的信息及題意,要求的是鋪設(shè)道路的最小總費用,且從任一城市都能到達其余各城市,可將圖(3)調(diào)整為如圖所示的結(jié)構(gòu)(線段下方的數(shù)字為兩城市之間鋪設(shè)道路的費用). 此時鋪設(shè)道路的總費用為2+3+1+2+3+5=16. 答案 16 考題分析 具備一定的推理與證明能力是高考的一項基本要求.歸納推理是高考考查的熱點,這類題目具有很好的區(qū)分度,考查形式一般為選擇題或填空題. 網(wǎng)絡(luò)構(gòu)建 高頻考點突破 考點一:合情推理 【例1】(1)(xx武昌模擬)設(shè)fk(x)=sin2kx+cos2kx(x∈R),利用三角變換,估計fk(x)在k=1,2,3時的取值情況,對k∈N+時推測fk(x)的取值范圍是________(結(jié)果用k表示). (2)在平面幾何里,有“若△ABC的三邊長分別為a,b,c,內(nèi)切圓半徑為r,則三角形面積為S△ABC=(a+b+c)r”,拓展到空間,類比上述結(jié)論,“若四面體ABCD的四個面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為r,則四面體的體積為________.” [審題導(dǎo)引] (1)由f1(x)、f2(x)、f3(x)的取值范圍觀察規(guī)律可得; (2)注意發(fā)現(xiàn)其中的規(guī)律總結(jié)出共性加以推廣,或?qū)⒔Y(jié)論類比到其他方面,得出結(jié)論. [規(guī)范解答] (1)當k=1,f1(x)=sin2x+cos2x=1. 當k=2時,f2(x)=sin4x+cos4x =(sin2x+cos2x)2-2sin2xcos2x=1-sin22x. ∵0≤sin22x≤1,∴f2(x)∈. 當k=3時,f3(x)=sin6x+cos6x =(sin2x+cos2x)(sin4x-sin2xcos2x+cos4x) =1-3sin2xcos2x=1-sin22x. ∵0≤sin22x≤1,∴f3(x)∈, 故可推測≤fk(x)≤1. (2)三角形的面積類比為四面體的體積,三角形的邊長類比為四面體四個面的面積,內(nèi)切圓半徑類比為內(nèi)切球的半徑.二維圖形中類比為三維圖形中的,得V四面體ABCD=(S1+S2+S3+S4)r.故填V四面體ABCD=(S1+S2+S3+S4)r. [答案] (1)≤fk(x)≤1 (2)V四面體ABCD=(S1+S2+S3+S4)r 【規(guī)律總結(jié)】 歸納推理與類比推理之區(qū)別 (1)歸納推理是由部分到整體,由個別到一般的推理.在進行歸納時,要先根據(jù)已知的部分個體,把它們適當變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論. (2)類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個對象具有某個性質(zhì),則另一個對象也具有類似的性質(zhì).在進行類比時,要充分考慮已知對象性質(zhì)的推理過程,然后類比推導(dǎo)類比對象的性質(zhì). 【變式訓(xùn)練】 1.若數(shù)列{an}(n∈N+)是等差數(shù)列,則有通項為bn=(n∈N+)的數(shù)列{bn}也為等差數(shù)列,類比上述性質(zhì),若數(shù)列{cn}是等比數(shù)列,且cn>0,則有通項為dn=________(n∈N+)的數(shù)列{dn}也是等比數(shù)列. 解析 ∵{cn}是等比數(shù)列,且cn>0, ∴{lg cn}是等差數(shù)列,令dn=, 則lg dn=, 由題意知{lg dn}為等差數(shù)列, ∴dn=為等比數(shù)列. 答案 2.平面內(nèi)有n條直線,其中任何兩條都不平行,任何三條不過同一點,試歸納它們的交點個數(shù). 解析 n=2時,交點個數(shù):f(2)=1. n=3時,交點個數(shù):f(3)=3. n=4時,交點個數(shù):f(4)=6. n=5時,交點個數(shù):f(5)=10. 猜想歸納:f(n)=n(n-1)(n≥2). 考點二:演繹推理 【例2】求證:a,b,c為正實數(shù)的充要條件是a+b+c>0,且ab+bc+ca>0和abc>0. [審題導(dǎo)引] 由a、b、c為正實數(shù),顯然易得a+b+c>0,ab+bc+ca>0,abc>0,即“必要性”的證明用直接法易于完成.證明“充分性”時,要綜合三個不等式推出a、b、c是正實數(shù),有些難度、需用反證法. [規(guī)范解答] (1)證必要性(直接證法):因為a、b、c為正實數(shù),所以a+b+c>0, ab+bc+ca>0,abc>0. 所以必要性成立. (2)證充分性(反證法):假設(shè)a、b、c不全為正實數(shù)(原結(jié)論是a、b、c都是正實數(shù)),由于abc>0,則它們只能是二負一正. 不妨設(shè)a<0,b<0,c>0, 又由于ab+bc+ac>0?a(b+c)+bc>0, 因為bc<0,所以a(b+c)>0.① 又a<0,所以b+c<0.② 而a+b+c>0,所以a+(b+c)>0. 所以a>0,與a<0的假設(shè)矛盾. 故假設(shè)不成立,原結(jié)論成立,即a、b、c均為正實數(shù). 【規(guī)律總結(jié)】 1.演繹推理問題的處理方法 從思維過程的指向來看,演繹推理是以某一類事物的一般判斷為前提,而作出關(guān)于該類事物的判斷的思維形式,因此是從一般到特殊的推理.數(shù)學(xué)中的演繹法一般是以三段論的格式進行的.三段論由大前提、小前提和結(jié)論三個命題組成,大前提是一個一般性原理,小前提給出了適合于這個原理的一個特殊情形,結(jié)論則是大前提和小前提的邏輯結(jié)果. 2.適用反證法證明的六種題型 反證法是一種重要的間接證明方法,適用反證法證明的題型有:(1)易導(dǎo)出與已知矛盾的命題;(2)否定性命題;(3)唯一性命題;(4)至少至多型命題;(5)一些基本定理;(6)必然性命題等. 【變式訓(xùn)練】 3.若定義在區(qū)間D上的函數(shù)f(x)對于D上的n個值x1,x2,…,xn,總滿足[f(x1)+f(x2)+…+f(xn)]≤f,稱函數(shù)f(x)為D上的凸函數(shù).現(xiàn)已知f(x)=sin x在(0,π)上是凸函數(shù),則在△ABC中,sin A+sin B+sin C的最大值是________. 解析 因為凸函數(shù)滿足[f(x1)+f(x2)+…+f(xn)]≤f,(大前提) f(x)=sin x在(0,π)上是凸函數(shù),(小前提) 所以f(A)+f(B)+f(C)≤3f,(結(jié)論) 即sin A+sin B+sin C≤3sin =. 因此sin A+sin B+sin C的最大值是. 考點三:數(shù)學(xué)歸納法 【例3】設(shè)數(shù)列{an}的前n項和為Sn,且S-(an+2)Sn+1=0,1-Sn=anbn(n∈N+). (1)求a1,a2的值和數(shù)列{an}的通項公式; (2)若正項數(shù)列{cn}滿足:cn≤(n∈N+,0<a<1),求證: <1. [審題導(dǎo)引] (1)由于S-(an+2)Sn+1=0中含有S,通過升降角標的方法無法把Sn轉(zhuǎn)化為an,這樣就需要把an轉(zhuǎn)化為Sn-Sn-1(n≥2),通過探求Sn,然后根據(jù)求得的Sn求{an}的通項公式; (2)根據(jù)(1)求得的結(jié)果,根據(jù)的結(jié)構(gòu)確定放縮的方法求證. [規(guī)范解答] (1)S-(a1+2)S1+1=0?a1=, S-(a2+2)S2+1=0?a2=. S-(an+2)Sn+1=0,① 當n≥2時,an=Sn-Sn-1,代入①式,得SnSn-1-2Sn+1=0,② 又由S1=,S2=a1+a2=,S3==. 猜想Sn=. 下面用數(shù)學(xué)歸納法證明: ①當n=1時,顯然成立; ②假設(shè)當n=k時,Sk=, 則n=k+1時,Sk+1Sk-2Sk+1+1=0, Sk+1==成立. 綜合①②,可知猜想成立. 所以當n≥2時,an=Sn-Sn-1=,當n=1時也滿足, 故an=(n∈N+). (2)證明 由(1),得bn=n, cn≤=<, 則 < =1-<1. 【規(guī)律總結(jié)】 使用數(shù)學(xué)歸納法需要注意的三個問題 在使用數(shù)學(xué)歸納法時還要明確: (1)數(shù)學(xué)歸納法是一種完全歸納法,其中前兩步在推理中的作用是:第一步是遞推的基礎(chǔ),第二步是遞推的依據(jù),二者缺一不可; (2)在運用數(shù)學(xué)歸納法時,要注意起點n,并非一定取1,也可能取0,2等值,要看清題目; (3)第二步證明的關(guān)鍵是要運用歸納假設(shè),特別要弄清楚由k到k+1時命題變化的情況. 【變式訓(xùn)練】 4.(xx青島二模)已知集合A={xx=-2n-1,n∈N+},B={xx=-6n+3,n∈N+},設(shè)Sn是等差數(shù)列{an}的前n項和,若{an}的任一項an∈A∩B且首項a1是A∩B中的最大數(shù),-750<S10<-300. (1)求數(shù)列{an}的通項公式; (2)若數(shù)列{bn}滿足bn=令Tn=24(b2+b4+b6+…b2n),試比較Tn與的大?。? 解析 (1)根據(jù)題設(shè)可得:集合A中所有的元素可以組成以-3為首項,-2為公差的遞減等差數(shù)列;集合B中所有的元素可以組成以-3為首項,-6為公差的遞減等差數(shù)列. 由此可得,對任意的n∈N+,有A∩B=B, A∩B中的最大數(shù)為-3,即a1=-3, 設(shè)等差數(shù)列{an}的公差為d,則an=-3+(n-1)d, S10==45d-30, ∵-750<S10<-300, ∴-750<45d-30<-300, 即-16<d<-6, 由于B中所有的元素可以組成以-3為首項,-6為公差的遞減等差數(shù)列, 所以d=-6m(m∈Z,m≠0), 由-16<-6m<-6?m=2, 所以d=-12, 所以數(shù)列{an}的通項公式為an=9-12n(n∈N+). (2)bn==n, Tn=24(b2+b4+b6+…+b2n)=24 =24, Tn-=24--=, 于是確定Tn與的大小關(guān)系等價于比較2n與2n+1的大小, 由2<21+1,22<22+1,23>23+1,24>24+1,… 可猜想當n≥3時,2n>2n+1,證明如下: 證法一?、佼攏=3時,由上驗算可知成立. ②假設(shè)n=k時,2k>2k+1, 則2k+1=22k>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)+1, 所以當n=k+1時猜想也成立. 根據(jù)①②可知,對一切n≥3的正整數(shù), 都有2n>2n+1, ∴當n=1,2時,Tn<,當n≥3時,Tn>. 證法二 當n≥3時, 2n=(1+1)n=C+C+…+C+C ≥C+C+C+C=2n+2>2n+1, ∴當n=1,2時,Tn<, 當n≥3時,Tn>. 名師押題高考 【押題1】 已知“整數(shù)對”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個整數(shù)對是 A.(7,5) B.(5,7) C.(2,10) D.(10,1) 解析 依題意,就每組整數(shù)對的和相同的分為一組,不難得知每組整數(shù)對的和為n+1,且每組共有n個整數(shù)對,這樣的前n組一共有個整數(shù)對,注意到<60<,因此第60個整數(shù)對處于第11組(每對整數(shù)對的和為12的組)的第5個位置,結(jié)合題意可知每對整數(shù)對的和為12的組中的各對數(shù)依次為(1,11),(2,10),(3,9),(4,8),(5,7),… 因此第60個整數(shù)對是(5,7).故選B. 答案 B [押題依據(jù)] 能用歸納和類比進行簡單的推理是高考對合情推理的基本要求.相比較而言,歸納推理是高考的一個熱點.本題體現(xiàn)了歸納對推理的思想,需從所給的數(shù)對中總結(jié)歸納出其規(guī)律,進而推導(dǎo)出第60個整數(shù)對.題目不難,體現(xiàn)了高考的熱點,故押此題. 押題2】已知命題:“若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m<n,m,n∈N+),則am+n=.”現(xiàn)已知數(shù)列{bn}(bn>0,n∈N+)為等比數(shù)列,且bm=a,bn=b(m<n,m,n∈N+),若類比上述結(jié)論,則可得到bm+n=________. 解析 由題意類比可得bm+n=. 答案 [押題依據(jù)] 歸納和類比是兩種重要的思維形式,是高考的熱點,通常以選擇題或填空題的形式考查.本題以數(shù)列知識為背景,考查類比推理,題目不難,但具有較好的代表性,故押此題.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第3講 推理與證明教案 2019 2020 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 推理 證明 教案
鏈接地址:http://www.hcyjhs8.com/p-2705421.html