防城港市防城區(qū)2015-2016年七年級下期中數(shù)學試卷含答案解析.doc
《防城港市防城區(qū)2015-2016年七年級下期中數(shù)學試卷含答案解析.doc》由會員分享,可在線閱讀,更多相關(guān)《防城港市防城區(qū)2015-2016年七年級下期中數(shù)學試卷含答案解析.doc(22頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2015-2016學年廣西防城港市防城區(qū)七年級(下)期中數(shù)學試卷 一、選擇題:每小題3分,共36分,每小題只有一個答案正確 1.9的平方根是( ?。? A.3 B. C.3 D.﹣3 2.如圖,能判定EC∥AB的條件是( ) A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.如圖,點A(﹣2,1)到y(tǒng)軸的距離為( ?。? A.﹣2 B.1 C.2 D. 4.如圖,圖中∠α的度數(shù)等于( ) A.135 B.125 C.115 D.105 5.如圖,AB∥CD,DE⊥CE,∠1=34,則∠DCE的度數(shù)為( ?。? A.34 B.56 C.66 D.54 6.如圖,在直角坐標系中,卡片蓋住的數(shù)可能是( ?。? A.(2,3) B.(﹣2,1) C.(﹣2,﹣2.5) D.(3,﹣2) 7.若|3﹣a|+=0,則a+b的值是( ?。? A.2 B.1 C.0 D.﹣1 8.估算﹣2的值( ) A.在1到2之間 B.在2到3之間 C.在3到4之間 D.在4到5之間 9.已知點P位于y軸右側(cè),距y軸3個單位長度,位于x軸上方,距離x軸4個單位長度,則點P坐標是( ) A.(﹣3,4) B.(3,4) C.(﹣4,3) D.(4,3) 10.在平面直角坐標系中,將點B(﹣3,2)向右平移5個單位長度,再向下平移3個單位長度后與點A(x,y)重合,則點A的坐標是( ) A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1) 11.如圖,已知棋子“車”的坐標為(﹣2,﹣1),棋子“馬”的坐標為(1,﹣1),則棋子“炮”的坐標為( ?。? A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2) 12.如圖,直線AC∥BD,AO、BO分別是∠BAC、∠ABD的平分線,那么∠BAO與∠ABO之間的大小關(guān)系一定為( ?。? A.互余 B.相等 C.互補 D.不等 二、填空題:每小題3分,共18分 13.如圖,直線a∥b,∠1=125,則∠2的度數(shù)為 ?。? 14.4的算術(shù)平方根是 ,9的平方根是 ,﹣27的立方根是 ?。? 15.將實數(shù),π,0,﹣6由小到大用“<”號連起來,可表示為 ?。? 16.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為 . 17.如圖,在長20米,寬10米的長方形草地內(nèi)修建了寬2米的道路,則草地的面積為 . 18.觀察下列各式: =2, =3, =4,…請你找出其中規(guī)律,并將第n(n≥1)個等式寫出來 . 三、搜索相關(guān)資料解答題(共66分,要求寫出解答過程) 19.把下列各數(shù)的序號填在相應的橫線上.①﹣0.3,②0,③,④π2,⑤|﹣2|,⑥,⑦3.1010010001…(2016春?防城區(qū)期中)如圖,AB和CD相交于點O,∠C=∠1,∠D=∠2,求證:∠A=∠B. 證明:∵∠C=∠1,∠D=∠2(已知) 又∵∠1=∠2( ?。? ∴ ?。ǖ攘看鷵Q) ∴AC∥BD( ?。? ∴ (兩直線平行,內(nèi)錯角相等) 21.我們在學習“實數(shù)”時,畫了這樣一個圖,即“以數(shù)軸上的單位長為‘1’的線段作一個正方形,然后以原點O為圓心,正方形的對角線長為半徑畫弧交x軸于點A”,請根據(jù)圖形回答下列問題: (1)線段OA的長度是多少?(要求寫出求解過程) (2)這個圖形的目的是為了說明什么? (3)這種研究和解決問題的方式,體現(xiàn)了 的數(shù)學思想方法. (將下列符合的選項序號填在橫線上) A、數(shù)形結(jié)合;B、代入;C、換元;D、歸納. 22.如圖,已知:AB∥DE,∠1=∠2,直線AE與DC平行嗎?請說明理由. 23.如圖,直線AB∥CD,BC平分∠ABD,∠1=65,求∠2的度數(shù). 24.如圖,△A1B1C1是△ABC向右平移4個單位長度后得到的,且三個頂點的坐標分別為A1(1,1),B1(4,2),C1(3,4). (1)請畫出△ABC,并寫出點A,B,C的坐標; (2)求出△AOA1的面積. 25.位于漢江沿岸的小明家、學校、醫(yī)院、游樂場的平面圖如圖所示. (1)建立適當?shù)钠矫嬷苯亲鴺讼?,使醫(yī)院的坐標為(3,0)并寫出小明家、學校、游樂場的坐標; (2)根據(jù)蜀河大壩蓄水工程需要,小明家及學校、醫(yī)院、游樂場需要等距離整體遷移,已知遷移后新的小明家、學校、游樂場、醫(yī)院分別用A、B、C、D表示,且這四點的坐標分別用原來各地點的橫坐標都減去5、縱坐標都加上2 得到,請先在圖中描出A、B、C、D的位置,畫出四邊形ABCD, 然后說明四邊形ABCD是由以小明家、學校、游樂場、醫(yī)院所在地為頂點的四邊形經(jīng)過怎樣平移得到的? 26.(12分)(2016春?防城區(qū)期中)如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動點. (1)當點P移動到AB、CD之間時,如圖(1),這時∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論. (2)當點P移動到如圖(2)的位置時,∠P與∠A、∠C又有怎樣的關(guān)系?請證明你的結(jié)論. 2015-2016學年廣西防城港市防城區(qū)七年級(下)期中數(shù)學試卷 參考答案與試題解析 一、選擇題:每小題3分,共36分,每小題只有一個答案正確 1.9的平方根是( ?。? A.3 B. C.3 D.﹣3 【考點】平方根. 【分析】根據(jù)平方根的含義和求法,可得9的平方根是: =3,據(jù)此解答即可. 【解答】解:9的平方根是: =3. 故選:A. 【點評】此題主要考查了平方根的性質(zhì)和應用,要熟練掌握,解答此題的關(guān)鍵是要明確:一個正數(shù)有兩個平方根,這兩個平方根互為相反數(shù),零的平方根是零,負數(shù)沒有平方根. 2.如圖,能判定EC∥AB的條件是( ?。? A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 【考點】平行線的判定. 【分析】根據(jù)平行線的判定定理即可直接判斷. 【解答】解:A、兩個角不是同位角、也不是內(nèi)錯角,故選項錯誤; B、兩個角不是同位角、也不是內(nèi)錯角,故選項錯誤; C、不是EC和AB形成的同位角、也不是內(nèi)錯角,故選項錯誤; D、正確. 故選D. 【點評】本題考查了判定兩直線平行的方法,正確理解同位角、內(nèi)錯角和同旁內(nèi)角的定義是關(guān)鍵. 3.如圖,點A(﹣2,1)到y(tǒng)軸的距離為( ?。? A.﹣2 B.1 C.2 D. 【考點】點的坐標. 【分析】根據(jù)點到x軸的距離等于縱坐標的長度,到y(tǒng)軸的距離等于橫坐標的長度解答. 【解答】解:點A的坐標為(﹣2,1),則點A到y(tǒng)軸的距離為2. 故選C. 【點評】本題考查了點的坐標,熟記點到x軸的距離等于縱坐標的長度,到y(tǒng)軸的距離等于橫坐標的長度是解題的關(guān)鍵. 4.如圖,圖中∠α的度數(shù)等于( ?。? A.135 B.125 C.115 D.105 【考點】對頂角、鄰補角. 【分析】根據(jù)鄰補角互補解答即可. 【解答】解:∠α的度數(shù)=180﹣45=135. 故選A. 【點評】此題考查鄰補角定義,關(guān)鍵是根據(jù)鄰補角互補分析. 5.如圖,AB∥CD,DE⊥CE,∠1=34,則∠DCE的度數(shù)為( ) A.34 B.56 C.66 D.54 【考點】平行線的性質(zhì). 【分析】根據(jù)平行線的性質(zhì)得到∠D=∠1=34,由垂直的定義得到∠DEC=90,根據(jù)三角形的內(nèi)角和即可得到結(jié)論. 【解答】解:∵AB∥CD, ∴∠D=∠1=34, ∵DE⊥CE, ∴∠DEC=90, ∴∠DCE=180﹣90﹣34=56. 故選B. 【點評】本題考查了平行線的性質(zhì),三角形的內(nèi)角和,熟記平行線的性質(zhì)定理是解題的關(guān)鍵. 6.如圖,在直角坐標系中,卡片蓋住的數(shù)可能是( ?。? A.(2,3) B.(﹣2,1) C.(﹣2,﹣2.5) D.(3,﹣2) 【考點】點的坐標. 【分析】根據(jù)第四象限內(nèi)的點的橫坐標大于零,縱坐標小于零,可得答案. 【解答】解:A、(2,3)在第一象限,故A錯誤; B、(﹣2,1)在第二象限,故B錯誤; C、(﹣2,﹣2.5)在第三象限,故C錯誤; D、(3,﹣2)在第四象限,故D正確; 故選:D. 【點評】本題考查了點的坐標,記住各象限內(nèi)點的坐標的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 7.若|3﹣a|+=0,則a+b的值是( ?。? A.2 B.1 C.0 D.﹣1 【考點】非負數(shù)的性質(zhì):算術(shù)平方根;非負數(shù)的性質(zhì):絕對值. 【分析】根據(jù)幾個非負數(shù)的和為0時,這幾個非負數(shù)都為0列出算式求出a、b的值,計算即可. 【解答】解:由題意得,3﹣a=0,2+b=0, 解得,a=3,b=﹣2, a+b=1, 故選:B. 【點評】本題考查的是非負數(shù)的性質(zhì),掌握幾個非負數(shù)的和為0時,這幾個非負數(shù)都為0是解題的關(guān)鍵. 8.估算﹣2的值( ?。? A.在1到2之間 B.在2到3之間 C.在3到4之間 D.在4到5之間 【考點】估算無理數(shù)的大?。? 【分析】先估計的整數(shù)部分,然后即可判斷﹣2的近似值. 【解答】解:∵5<<6, ∴3<﹣2<4. 故選C. 【點評】此題主要考查了無理數(shù)的估算能力,現(xiàn)實生活中經(jīng)常需要估算,估算應是我們具備的數(shù)學能力,“夾逼法”是估算的一般方法,也是常用方法. 9.已知點P位于y軸右側(cè),距y軸3個單位長度,位于x軸上方,距離x軸4個單位長度,則點P坐標是( ) A.(﹣3,4) B.(3,4) C.(﹣4,3) D.(4,3) 【考點】點的坐標. 【分析】根據(jù)題意,P點應在第一象限,橫、縱坐標為正,再根據(jù)P點到坐標軸的距離確定點的坐標. 【解答】解:∵P點位于y軸右側(cè),x軸上方, ∴P點在第一象限, 又∵P點距y軸3個單位長度,距x軸4個單位長度, ∴P點橫坐標為3,縱坐標為4,即點P的坐標為(3,4).故選B. 【點評】本題考查了點的位置判斷方法及點的坐標幾何意義. 10.在平面直角坐標系中,將點B(﹣3,2)向右平移5個單位長度,再向下平移3個單位長度后與點A(x,y)重合,則點A的坐標是( ?。? A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1) 【考點】坐標與圖形變化-平移. 【分析】讓B的橫坐標加5,縱坐標減3即可得到所求點A的坐標. 【解答】解:∵將點B(﹣3,2)向右平移5個單位長度,再向下平移3個單位長度后與點A(x,y)重合, ∴所求點A的橫坐標為:﹣3+5=2,縱坐標為2﹣3=﹣1, ∴所求點的坐標為(2,﹣1). 故選D. 【點評】本題考查圖形的平移變換,要牢記左右移動改變點的橫坐標,左減,右加;上下移動改變點的縱坐標,下減,上加. 11.如圖,已知棋子“車”的坐標為(﹣2,﹣1),棋子“馬”的坐標為(1,﹣1),則棋子“炮”的坐標為( ) A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2) 【考點】坐標確定位置. 【專題】數(shù)形結(jié)合. 【分析】先根據(jù)棋子“車”的坐標畫出直角坐標系,然后寫出棋子“炮”的坐標. 【解答】解:如圖, 棋子“炮”的坐標為(3,﹣2). 故選C. 【點評】本題考查了坐標確定位置:平面坐標系中的點與有序?qū)崝?shù)對一一對應;記住平面內(nèi)特殊位置的點的坐標特征. 12.如圖,直線AC∥BD,AO、BO分別是∠BAC、∠ABD的平分線,那么∠BAO與∠ABO之間的大小關(guān)系一定為( ?。? A.互余 B.相等 C.互補 D.不等 【考點】平行線的性質(zhì);余角和補角. 【分析】根據(jù)平行線的性質(zhì)得出∠CAB+∠ABD=180,再根據(jù)角平分線的定義得出結(jié)論. 【解答】解:∵AC∥BD, ∴∠CAB+∠ABD=180, ∵AO、BO分別是∠BAC、∠ABD的平分線, ∴∠CAB=2∠OAB,∠ABD=2∠ABO, ∴∠OAB+∠ABO=90, ∴∠AOB=90, ∴OA⊥OB, 故選A 【點評】此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線的性質(zhì)得出∠CAB+∠ABD=180. 二、填空題:每小題3分,共18分 13.如圖,直線a∥b,∠1=125,則∠2的度數(shù)為 55?。? 【考點】平行線的性質(zhì). 【分析】先根據(jù)對頂角相等,∠1=65,求出∠3的度數(shù),再由兩直線平行,同旁內(nèi)角互補得出∠2的度數(shù). 【解答】解:解:∵∠1=125, ∴∠3=∠1=125, ∵a∥b, ∴∠2=180﹣∠3=180﹣125=55. 故答案為:55. 【點評】本題考查了平行線的性質(zhì),對頂角的性質(zhì),熟記定理是解題的關(guān)鍵. 14.4的算術(shù)平方根是 2 ,9的平方根是 3 ,﹣27的立方根是 ﹣3 . 【考點】立方根;平方根;算術(shù)平方根. 【分析】根據(jù)算式平方根、平方根和立方根的定義求出即可. 【解答】解:4的算術(shù)平方根是2,9的平方根是3,﹣27的立方根是﹣3. 故答案為:2;3,﹣3. 【點評】本題考查了對算術(shù)平方根、平方根和立方根的定義的應用,主要考查學生的理解能力和計算能力. 15.將實數(shù),π,0,﹣6由小到大用“<”號連起來,可表示為 ﹣6 . 【考點】實數(shù)大小比較. 【分析】正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,據(jù)此判斷即可. 【解答】解:≈2.236,π≈3.14, ∵﹣6<0<2.236<3.14, ∴﹣6. 故答案為:﹣6. 【點評】此題主要考查了實數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:正實數(shù)>0>負實數(shù),兩個負實數(shù)絕對值大的反而?。? 16.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為 10?。? 【考點】平移的性質(zhì). 【分析】根據(jù)平移的基本性質(zhì)解答即可. 【解答】解:根據(jù)題意,將周長為8的△ABC沿邊BC向右平移1個單位得到△DEF, 則AD=1,BF=BC+CF=BC+1,DF=AC, 又∵AB+BC+AC=8, ∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=10. 故答案為:10. 【點評】本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關(guān)鍵. 17.如圖,在長20米,寬10米的長方形草地內(nèi)修建了寬2米的道路,則草地的面積為 144米2?。? 【考點】生活中的平移現(xiàn)象. 【分析】將道路分別向左、向上平移,得到草地為一個長方形,分別求出長方形的長和寬,再用長和寬相乘即可. 【解答】解:將道路分別向左、向上平移,得到草地為一個長方形, 長方形的長為20﹣2=18(米),寬為10﹣2=8(米), 則草地面積為188=144米2. 故答案為:144米2. 【點評】本題考查了平移在生活中的運用,將道路分別向左、向上平移,得到草地為一個長方形是解題的關(guān)鍵. 18.觀察下列各式: =2, =3, =4,…請你找出其中規(guī)律,并將第n(n≥1)個等式寫出來 ?。? 【考點】算術(shù)平方根. 【專題】規(guī)律型. 【分析】根據(jù)所給例子,找到規(guī)律,即可解答. 【解答】解: =(1+1)=2, =(2+1)=3, =(3+1)=4, … , 故答案為:. 【點評】本題考查了實數(shù)平方根,解決本題的關(guān)鍵是找到規(guī)律. 三、搜索相關(guān)資料解答題(共66分,要求寫出解答過程) 19.把下列各數(shù)的序號填在相應的橫線上.①﹣0.3,②0,③,④π2,⑤|﹣2|,⑥,⑦3.1010010001…(2016春?防城區(qū)期中)如圖,AB和CD相交于點O,∠C=∠1,∠D=∠2,求證:∠A=∠B. 證明:∵∠C=∠1,∠D=∠2(已知) 又∵∠1=∠2( 對頂角相等?。? ∴ ∠C=∠D?。ǖ攘看鷵Q) ∴AC∥BD( 內(nèi)錯角相等,兩直線平行?。? ∴ ∠A=∠B?。▋芍本€平行,內(nèi)錯角相等) 【考點】平行線的判定. 【專題】推理填空題. 【分析】根據(jù)對頂角相等可得∠1=∠2,再由∠C=∠1,∠D=∠2,等量代換可得∠C=∠D,然后根據(jù)內(nèi)錯角相等,兩直線平行可判斷出AC∥DB,最后根據(jù)兩直線平行,內(nèi)錯角相等得出∠A=∠B. 【解答】證明:∵∠C=∠1,∠D=∠2 (已知) 又∵∠1=∠2 ( 對頂角相等) ∴∠C=∠D( 等量代換) ∴AC∥BD ( 內(nèi)錯角相等,兩直線平行) ∴∠A=∠B(兩直線平行,內(nèi)錯角相等) 故答案為對頂角相等;∠C=∠D;內(nèi)錯角相等,兩直線平行;∠A=∠B. 【點評】本題考查了平行線的判定與性質(zhì),對頂角的性質(zhì),熟練掌握平行線的判定方法和性質(zhì),并準確識圖是解題的關(guān)鍵. 21.我們在學習“實數(shù)”時,畫了這樣一個圖,即“以數(shù)軸上的單位長為‘1’的線段作一個正方形,然后以原點O為圓心,正方形的對角線長為半徑畫弧交x軸于點A”,請根據(jù)圖形回答下列問題: (1)線段OA的長度是多少?(要求寫出求解過程) (2)這個圖形的目的是為了說明什么? (3)這種研究和解決問題的方式,體現(xiàn)了 A 的數(shù)學思想方法. (將下列符合的選項序號填在橫線上) A、數(shù)形結(jié)合;B、代入;C、換元;D、歸納. 【考點】實數(shù)與數(shù)軸. 【專題】數(shù)形結(jié)合. 【分析】(1)首先根據(jù)勾股定理求出線段OB的長度,然后結(jié)合數(shù)軸的知識即可求解; (2)根據(jù)數(shù)軸上的點與實數(shù)的對應關(guān)系即可求解; (3)本題利用實數(shù)與數(shù)軸的對應關(guān)系即可解答. 【解答】解:(1)∵OB2=12+12=2, ∴OB=, ∴OA=OB=; (2)數(shù)軸上的點和實數(shù)﹣一對應關(guān)系; (3)A. 【點評】本題主要考查了實數(shù)與數(shù)軸之間的定義關(guān)系,此題綜合性較強,不僅要結(jié)合圖形,還需要熟悉平方根的定義.也要求學生了解數(shù)形結(jié)合的數(shù)學思想. 22.如圖,已知:AB∥DE,∠1=∠2,直線AE與DC平行嗎?請說明理由. 【考點】平行線的判定與性質(zhì). 【分析】首先根據(jù)AB∥DE可得∠1=∠3,再由∠1=∠2可根據(jù)等量代換得到∠2=∠3,進而得到AE∥DC. 【解答】答:AE∥DC; 理由如下: ∵AB∥DE(已知), ∴∠1=∠3(兩直線平行,內(nèi)錯角相等), ∵∠1=∠2(已知), ∴∠2=∠3(等量代換), ∴AE∥DC(內(nèi)錯角相等,兩直線平行). 【點評】此題主要考查了平行線的判定與性質(zhì),關(guān)鍵是掌握兩直線平行,內(nèi)錯角相等;內(nèi)錯角相等,兩直線平行. 23.如圖,直線AB∥CD,BC平分∠ABD,∠1=65,求∠2的度數(shù). 【考點】平行線的性質(zhì). 【分析】由平行線的性質(zhì)得到∠ABC=∠1=65,∠ABD+∠BDC=180,由BC平分∠ABD,得到∠ABD=2∠ABC=130,于是得到結(jié)論. 【解答】解:∵AB∥CD, ∴∠ABC=∠1=65,∠ABD+∠BDC=180, ∵BC平分∠ABD, ∴∠ABD=2∠ABC=130, ∴∠BDC=180﹣∠ABD=50, ∴∠2=∠BDC=50. 【點評】本題考查了平行線的性質(zhì)和角平分線定義等知識點,解此題的關(guān)鍵是求出∠ABD的度數(shù),題目較好,難度不大. 24.如圖,△A1B1C1是△ABC向右平移4個單位長度后得到的,且三個頂點的坐標分別為A1(1,1),B1(4,2),C1(3,4). (1)請畫出△ABC,并寫出點A,B,C的坐標; (2)求出△AOA1的面積. 【考點】作圖-平移變換. 【分析】(1)直接把△A1B1C1是向左平移4個單位,再寫出點A,B,C的坐標即可; (2)直接根據(jù)三角形的面積公式即可得出結(jié)論. 【解答】解:(1)如圖所示,A(﹣3,1),B(0,2),C(﹣1,4); (2)S△AOA1=41=2. 【點評】本題考查的是作圖﹣平移變換,熟知圖形平移不變性的性質(zhì)是解答此題的關(guān)鍵. 25.位于漢江沿岸的小明家、學校、醫(yī)院、游樂場的平面圖如圖所示. (1)建立適當?shù)钠矫嬷苯亲鴺讼?,使醫(yī)院的坐標為(3,0)并寫出小明家、學校、游樂場的坐標; (2)根據(jù)蜀河大壩蓄水工程需要,小明家及學校、醫(yī)院、游樂場需要等距離整體遷移,已知遷移后新的小明家、學校、游樂場、醫(yī)院分別用A、B、C、D表示,且這四點的坐標分別用原來各地點的橫坐標都減去5、縱坐標都加上2 得到,請先在圖中描出A、B、C、D的位置,畫出四邊形ABCD, 然后說明四邊形ABCD是由以小明家、學校、游樂場、醫(yī)院所在地為頂點的四邊形經(jīng)過怎樣平移得到的? 【考點】坐標確定位置;坐標與圖形變化-平移. 【分析】(1)首先建立平面直角坐標系,進而得出小明家、學校、游樂場的坐標; (2)利用平移規(guī)律得出各對應點位置,進而得出答案. 【解答】解:(1)如圖所示: 小明家的坐標為:(0,0)、學校的坐標為:(2,2)、游樂場的坐標為:(5,2); (2)∵四點的坐標分別用原來各地點的橫坐標都減去5、縱坐標都加上2 得到, ∴A、B、C、D的位置如圖所示, 則四邊形ABCD是由以小明家、學校、游樂場、醫(yī)院所在地為頂點的四邊形經(jīng)過向左平移5個單位再向上平移2個單位得到的. 【點評】此題主要考查了坐標確定位置以及平移變換,根據(jù)題意得出對應點位置是解題關(guān)鍵. 26.(12分)(2016春?防城區(qū)期中)如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動點. (1)當點P移動到AB、CD之間時,如圖(1),這時∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論. (2)當點P移動到如圖(2)的位置時,∠P與∠A、∠C又有怎樣的關(guān)系?請證明你的結(jié)論. 【考點】平行線的性質(zhì). 【分析】(1)延長AP后通過外角定理可得出結(jié)論; (2)延長BA到E,延長DC到F,利用內(nèi)角和定理解答. 【解答】證明:(1)∠P=∠A+∠C, 如圖(1)延長AP交CD與點E. ∵AB∥CD, ∴∠A=∠AEC. 又∵∠APC是△PCE的外角, ∴∠APC=∠C+∠AEC. ∴∠APC=∠A+∠C; (2)∠P=360﹣(∠A+∠C). 如圖(2)延長BA到E,延長DC到F, 由(1)得∠P=∠PAE+∠PCF. ∵∠PAE=180﹣∠PAB,∠PCF=180﹣∠PCD, ∴∠P=360﹣(∠PAB+∠PCD). 【點評】本題考查平行線的性質(zhì),難度不大,注意圖形的變化帶來的影響,不要有慣性思維. 第22頁(共22頁)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 防城港市 城區(qū) 2015 2016 年級 期中 數(shù)學試卷 答案 解析
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.hcyjhs8.com/p-2865468.html