壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
附 錄
一、沖壓工序卡
標 記
產(chǎn)品名稱
沖
壓
工
藝
規(guī)
程
卡
制件名稱
年產(chǎn)量
第 頁
產(chǎn)品圖號
ZHC-00-00
制件圖號
300萬件
共 頁
材料牌號及
技
術
要
求
1
145
毛
坯
形
狀
及
尺
寸
下料
板材15008501mm
裁 成
1448501mm
工
序
序
號
工序
名稱
工具
名稱
及
圖號
設 備
校
驗
要 求
備 注
1
沖上方異形部分
級進模
250KN壓力機
按
草
圖
校
驗
2
第一次彎曲
級進模
250KN
壓力機
按
草
圖
校
驗
3
頭部90度彎曲沖邊
級進模
250KN
壓力機
按
草
圖
校
驗
4
勾形部分成型
級進模
250KN
壓力機
按
草
圖
校
驗
5
切斷落料
級進模
250KN
壓力機
按
草
圖
校
驗
編制
審核
會簽
朱慧超
標記
處數(shù)
更改文件號
簽字
日期
標記
處數(shù)
更改文件號
簽字
日期
外文資料翻譯
專 業(yè):材料成型及控制工程(模具設計制造及自動化)
姓 名:
指 導 教 師:
申請學位級別:
論文提交日期:
學位授予單位:
Forming and stamping of sheet metals NC INCREMENTAL SHEET METAL FORMING
Proceedings of International Technology and Innovation Conference 2009
4 Sheet metal forming and blanking
4.1 Principles of die manufacture
4.1.1 Classification of dies
In metalforming,the geometry of the workpiece is established entirely or partially by the geometry of the die.In contrast to machining processes,ignificantly greater forces are necessary in forming.Due to the complexity of the parts,forming is often not carried out in a single operation.Depending on the geometry of the part,production is carried out in several operational steps via one or several production processes such as forming or blanking.One operation can also include several processes simultaneously(cf.Sect.2.1.4).
During the design phase,the necessary manufacturing methods as well as the sequence and number of production steps are established in a processing plan(Fig.4.1.1).In this plan,the availability of machines,the planned production volumes of the part and other boundary conditions are taken into account.
The aim is to minimize the number of dies to be used while keeping up a high level of operational reliability.The parts are greatly simplified right from their design stage by close collaboration between the Part Design and Production Departments in order to enable several forming and related blanking processes to be carried out in one forming station.
Obviously,the more operations which are integrated into a single die,the more complex the structure of the die becomes.The consequences are higher costs,a decrease in output and a lower reliability.
Fig.4.1.1 Production steps for the manufacture of an oil sump
Types of dies
The type of die and the closely related transportation of the part between dies is determined in accordance with the forming procedure,the size of the part in question and the production volume of parts to be produced.
The production of large sheet metal parts is carried out almost exclusively using single sets of dies.Typical parts can be found in automotive manufacture,the domestic appliance industry and radiator production.Suitable transfer systems,for example vacuum suction systems,allow the installation of double-action dies in a sufficiently large mounting area.In this way,for example,the right and left doors of a car can be formed jointly in one working stroke(cf.Fig.4.4.34).
Large size single dies are installed in large presses.The transportation of the parts from one forming station to another is carried out mechanically.In a press line with single presses installed one behind the other,feeders or robots can be used(cf.Fig.4.4.20 to 4.4.22),whilst in large-panel transfer presses,systems equipped with gripper rails(cf.Fig.4.4.29)or crossbar suction systems(cf.Fig.4.4.34)are used to transfer the parts.
Transfer dies are used for the production of high volumes of smaller and medium size parts(Fig.4.1.2).They consist of several single dies,which are mounted on a common base plate.The sheet metal is fed through mostly in blank form and also transported individually from die to die.If this part transportation is automated,the press is called a transfer press.The largest transfer dies are used together with single dies in large-panel transfer presses(cf.Fig.4.4.32).
In progressive dies,also known as progressive blanking dies,sheet metal parts are blanked in several stages;generally speaking no actual forming operation takes place.The sheet metal is fed from a coil or in the form of metal strips.Using an appropriate arrangement of the blanks within the available width of the sheet metal,an optimal material usage is ensured(cf.Fig.4.5.2 to 4.5.5). The workpiece remains fixed to the strip skeleton up until the la
Fig.4.1.2 Transfer die set for the production of an automatic transmission for an automotive application
-st operation.The parts are transferred when the entire strip is shifted further in the work flow direction after the blanking operation.The length of the shift is equal to the center line spacing of the dies and it is also called the step width.Side shears,very precise feeding devices or pilot pins ensure feed-related part accuracy.In the final production operation,the finished part,i.e.the last part in the sequence,is disconnected from the skeleton.A field of application for progressive blanking tools is,for example,in the production of metal rotors or stator blanks for electric motors(cf.Fig.4.6.11 and 4.6.20).
In progressive compound dies smaller formed parts are produced in several sequential operations.In contrast to progressive dies,not only blanking but also forming operations are performed.However, the workpiece also remains in the skeleton up to the last operation(Fig.4.1.3 and cf.Fig.4.7.2).Due to the height of the parts,the metal strip must be raised up,generally using lifting edges or similar lifting devices in order to allow the strip metal to be transported mechanically.Pressed metal parts which cannot be produced within a metal strip because of their geometrical dimensions are alternatively produced on transfer sets.
Fig.4.1.3 Reinforcing part of a car produced in a strip by a compound die set
Next to the dies already mentioned,a series of special dies are available for special individual applications.These dies are,as a rule,used separately.Special operations make it possible,however,for special dies to be integrated into an operational Sequence.Thus,for example,in flanging dies several metal parts can be joined together positively through the bending of certain metal sections(Fig.4.1.4and cf.Fig.2.1.34).During this operation reinforcing parts,glue or other components can be introduced.
Other special dies locate special connecting elements directly into the press.Sorting and positioning elements,for example,bring stamping nuts synchronised with the press cycles into the correct position so that the punch heads can join them with the sheet metal part(Fig.4.1.5).If there is sufficient space available,forming and blanking operations can be carried out on the same die.
Further examples include bending,collar-forming,stamping,fine blanking,wobble blanking and welding operations(cf.Fig.4.7.14 and4.7.15).
Fig.4.1.4 A hemming die
Fig.4.1.5 A pressed part with an integrated punched nut
4.1.2 Die development
Traditionally the business of die engineering has been influenced by the automotive industry.The following observations about the die development are mostly related to body panel die construction.Essential statements are,however,made in a fundamental context,so that they are applicable to all areas involved with the production of sheet-metal forming and blanking dies.
Timing cycle for a mass produced car body panel
Until the end of the 1980s some car models were still being produced for six to eight years more or less unchanged or in slightly modified form.Today,however,production time cycles are set for only five years or less(Fig.4.1.6).Following the new different model policy,the demands ondie makers have also changed fundamentally.Comprehensive contracts of much greater scope such as Simultaneous Engineering(SE)contracts are becoming increasingly common.As a result,the die maker is often involved at the initial development phase of the metal part as well as in the planning phase for the production process.Therefore,a much broader involvement is established well before the actual die development is initiated.
Fig.4.1.6 Time schedule for a mass produced car body panel
The timetable of an SE project
Within the context of the production process for car body panels,only a minimal amount of time is allocated to allow for the manufacture of the dies.With large scale dies there is a run-up period of about 10 months in which design and die try-out are included.In complex SE projects,which have to be completed in 1.5 to 2 years,parallel tasks must be carried out.Furthermore,additional resources must be provided before and after delivery of the dies.These short periods call for pre-cise planning,specific know-how,available capacity and the use of the latest technological and communications systems.The timetable shows the individual activities during the manufacturing of the dies for the production of the sheet metal parts(Fig.4.1.7).The time phases for large scale dies are more or less similar so that this timetable can be considered to be valid in general.
Data record and part drawing
The data record and the part drawing serve as the basis for all subsequent processing steps.They describe all the details of the parts to be produced. The information given in the
Fig.4.1.7 Timetable for an SE project
part drawing includes: part identification,part numbering,sheet metal thickness,sheet metal quality,tolerances of the finished part etc.(cf.Fig.4.7.17).
To avoid the production of physical models(master patterns),the CAD data should describe the geometry of the part completely by means of line,surface or volume models.As a general rule,high quality surface data with a completely filleted and closed surface geometry must be made available to all the participants in a project as early as possible.
Process plan and draw development
The process plan,which means the operational sequence to be followed in the production of the sheet metal component,is developed from the data record of the finished part(cf.Fig.4.1.1).Already at this point in time,various boundary conditions must be taken into account:the sheet metal material,the press to be used,transfer of the parts into the press,the transportation of scrap materials,the undercuts as well as the
sliding pin installations and their adjustment.
The draw development,i.e.the computer aided design and layout of the blank holder area of the part in the first forming stage–if need bealso the second stage–,requires a process planner with considerable experience(Fig.4.1.8).In order to recognize and avoid problems in areas which are difficult to draw,it is necessary to manufacture a physical analysis model of the draw development.With this model,the
forming conditions of the drawn part can be reviewed and final modifications introduced,which are eventually incorporated into the data record(Fig.4.1.9).
This process is being replaced to some extent by intelligent simulation methods,through which the potential defects of the formed component can be predicted and analysed interactively on the computer display.
Die design
After release of the process plan and draw development and the press,the design of the die can be started.As a rule,at this stage,the standards and manufacturing specifications required by the client must be considered.Thus,it is possible to obtain a unified die design and to consider the particular requests of the customer related to warehousing of standard,replacement and wear parts.Many dies need to be designed so that they can be installed in different types of presses.Dies are frequently installed both in a production press as well as in two different separate back-up presses.In this context,the layout of the die clamping elements,pressure pins and scrap disposal channels on different presses must be taken into account.Furthermore,it must be noted that drawing dies working in a single-action press may be installed in a double-action press(cf.Sect.3.1.3 and Fig.4.1.16).
Fig.4.1.8 CAD data record for a draw development
In the design and sizing of the die,it is particularly important to consider the freedom of movement of the gripper rail and the crossbar transfer elements(cf.Sect.4.1.6).These describe the relative movements between the components of the press transfer system and the die components during a complete press working stroke.The lifting movement of the press slide,the opening and closing movements of the gripper rails and the lengthwise movement of the whole transfer are all superimposed.The dies are designed so that collisions are avoided and a minimum clearance of about 20 mm is set between all the moving parts.
金屬板料的成形及沖裁數(shù)控漸進成形研究
技術與創(chuàng)新國際會議論文集2009
4 金屬板料的成形及沖裁
4. 模具制造原理
4.1.1模具的分類
在金屬成形的過程中,工件的幾何形狀完全或部分建立在模具幾何形狀的基礎上的。與機械加工相比,在成形時明顯更大的壓力是必要的。由于零件的復雜性,往往不是只進行一次操作就能成形的。根據(jù)零件的幾何形狀,通過由一個或幾個生產(chǎn)過程例如成形或沖裁的幾個操作步驟進行生產(chǎn)。一個操作也可以同時完成幾個過程。
在設計階段,合理的生產(chǎn)步驟、生產(chǎn)次序以及生產(chǎn)工序數(shù)都由生產(chǎn)計劃來決定(如圖4.1.1)。在這個計劃中,應該對機器的可利用性、零件的計劃生產(chǎn)量和其他限制條件予以考慮。
其目的是在保證高水平的操作可靠性的同時最大限度地減少需要使用的模具數(shù)量。通過部件設計部和生產(chǎn)部之間的緊密合作促使幾個成形和有關的沖裁過程能在一個成形操作中完成,如此一來,僅僅在設計階段就可以大大地簡化部件。
顯然,越是更多的操作集成到一個單獨的模具上,模具結構就必然更為復雜。其后果是成本較高、產(chǎn)量下降和可靠性較低。
圖4.1.1 油底殼的生產(chǎn)步驟
模具類型
模具的類型和模具之間零部件的密切相關運輸是根據(jù)成形步驟、預算的部件的尺寸、要生產(chǎn)的部件的生產(chǎn)量來確定的。
大型鈑金零件的生產(chǎn)幾乎完全采用單套模具來實現(xiàn)的。典型零件可在汽車制造、國內(nèi)家電業(yè)以及散熱器的生產(chǎn)中找到。適當?shù)霓D移系統(tǒng),例如真空抽吸系統(tǒng),可以使雙動模安裝在一個足夠大的安裝面上。例如,用這種方式可以使汽車左右車門在一個工作行程中一起成形。(參考圖4.4.34)。
尺寸大的單套模具需安裝在大型壓力機上。部件從一個成形點到另一個成形點的運輸是機械化地執(zhí)行的。工人或機器人可以使用與單工序壓力機一前一后安裝的沖壓線(對比圖4.4.20與 4.4.22),同時,在大型多工位壓力機上,系統(tǒng)還配備了夾鉗軌(如圖4.4.29)或交叉抽吸系統(tǒng)(如圖4.4.34)來運輸部件。
多工位轉換模是用于小型和中型零件的大批量生產(chǎn)(如圖4.1.2)。它們由幾個安裝在同一個基準平面上的單工序模具組成。金屬板料的送進主要以機械手運送的方式,也可以人工地從一個模具運到另一個模具。如果這部分的運輸自動化,那么此時的壓力就稱為轉換壓力。在大板料轉換沖壓線上,最大的多工位轉換模要與單工序模具配合使用(參考圖4.4.32)。
級進模,也稱為漸進沖裁模,鈑金件是分階段沖裁的; 一般來說,沒有實實在在的成形操作。鈑金是以金屬圈或金屬條的形式送進的。通過使用尺寸適宜的金屬板料和優(yōu)化的材料利用率可以達到對板料的合理利用(對比圖Fig.4.5.2與圖4.5.5)。工件一直固定在載體上,直到最后一次操作。沖裁完成后,整個條料按照工序流動方向移動時,該部件隨著轉移。移動的長度等于模具間中心線的距離,它也被稱為步距。切邊,通過使用非常精確的進給裝置或試點引腳確保相關進給零件精度。在最后一個工位,即最后一道工序,已成形的部分于載體斷開。例如電動機金屬轉子和定子的生產(chǎn)就是漸進沖裁模的一個應用領域(如圖.4.6.11和4.6.20)。
圖4.1.2轉移成套模具在機動裝置中的自動變速器上生產(chǎn)應用
較小的成形部件使用復合級進模通過幾個連續(xù)的操作即可完成后生產(chǎn)。與級進模相比,不僅可以完成沖裁,而且能完成成形操作。然而,工件還是與載體相連一直到最后一步操作(如圖4.1.3和對比圖4.7.2)。由于零件的高度,鋼帶必須提高時,通常使用起重邊緣或類似的起重設備,以便實現(xiàn)條料金屬的機械化運輸。由于其幾何尺寸而不能用一個金屬條料生產(chǎn)出來的沖壓金屬零件選擇性地在轉移設置上生產(chǎn)。
圖4.1.3 用一個條料在復合級進模上生產(chǎn)的汽車加強筋
接下來時已經(jīng)提到過的模具,一系列特殊模具適用于個別特殊運用。按規(guī)定,這些模具是單獨使用的。但是,特殊的操作使得特殊的模具集成到一個工序上成為可能。因此,例如,使用翻邊模幾個金屬部件組合在一起能積極通過某些區(qū)域的彎曲(如圖4,1,4和對比圖2,1,34)。在此期間加強部分,膠水或其他組件的運作可實施。
其他的特殊模具使特殊的連接部件直接定位在壓力機上。裝配和定位部件,例如,引進與壓力周期同步的沖頭到指定的位置以便沖頭與鈑金零件(如圖4.1.5)。如果有足夠的可用空間,成形和沖裁操作可以在同一模具上完成。
更一步的例子包括彎曲,滾壓成形,沖壓,精密沖裁,震動沖裁和焊接操作(對比圖4.7.14和圖4.7.15)。
如圖4.1.4卷邊模
如圖4.1.5帶有整體沖壓螺母的沖壓件
4.1.2 模具開發(fā)
汽車行業(yè)的發(fā)展已經(jīng)必然地影響了模具工程的發(fā)展。以下對與模具開發(fā)的研究主要是關于車身覆蓋件模具結構的。然而,用一個基本的環(huán)境獲得實質的結論,以便于它們適用于包括鈑金成形模和沖裁模的制造在內(nèi)的所有領域。
為汽車覆蓋件的大批量生產(chǎn)定時生產(chǎn)周期
直到20世紀80年代末,部分車型以6至8年大致維持不變或略加修改的形式而仍然處于制作中。然而今天,生產(chǎn)周期只有5年或更少(如圖4.1.6)。隨著不同的新設計工藝的發(fā)展,客戶對模具制造商的要求也發(fā)生了根本變化。更大范圍的綜合合同,如同步工程(SE)合同已變得越來越普遍。結果是,模具制造商往往僅處于金屬零件的最初的發(fā)展階段,以及生產(chǎn)過程的規(guī)劃階段。因此,在實際模具開發(fā)和啟動之前應該拓展更廣泛、長遠的業(yè)務。
圖4.1.6 汽車覆蓋件的大批量生產(chǎn)的時間表
同步工程項目時間表
在車身覆蓋件的生產(chǎn)過程中,只有極少部分時間用于模具的制造。對于大型模具,大約有十個月的準備期,其中包括模具的設計與調試。對于復雜的同步工程項目中,必須在1.5至2年內(nèi)完成,必須能完成同步任務。此外,在模具交付前后必須具有更多的產(chǎn)品資料說明。這些短期的準備需要優(yōu)化的設計、特別的技能、可利用空間以及最新技術的使用和通訊系統(tǒng)。該時間表顯示,用于生產(chǎn)鈑金件的模具的制造期間的個人工作內(nèi)容(如圖4.1.7)。大型模具的生產(chǎn)計劃或多或少都相似,以便于這個時間表可以被認為是普遍有效的。
圖4.1.7 同步工程項目時間表
數(shù)據(jù)采集和零件圖
數(shù)據(jù)采集和零件圖是所有工序步驟的基礎。它們描述了要生產(chǎn)部件的所有細節(jié)。在零件圖提供的信息包括:零件識別,部件的編號,板材厚度,板材的質量,成品零件的公差等(參考圖4.7.17)。
為了避免實體模型(主模型)的制作,CAD圖形應通過線、面或體積模型來完整地描述工件的幾何形狀。一般地,必須盡可能早地繪制好具有完全封閉曲面的高質量片體數(shù)模來滿足所有產(chǎn)品負責人的使用要求。
工藝方案和制圖計劃
工藝方案,即生產(chǎn)鈑金件應遵循的操作順序,是根據(jù)以往生產(chǎn)出的零件的經(jīng)驗數(shù)據(jù)制定的(參考圖4.1.1)。在此階段,必須提前及時考慮到各種邊界條件:金屬板材料,所需壓力,零件的加工硬化,廢料的排出,廢料刀以及導料銷的安裝和調試。
制圖計劃,即計算機輔助設計和第一個成形階段的部件的壓料圈的布局(如果第二個成形階段也需要),要求相當有經(jīng)驗的人來制定(如圖4.1.8)。為了識別和避免難繪制的區(qū)域,有必要來制造制圖計劃的實體分析模型。通過這一模型,可對所繪制的部件的成形條件進行審查和準確的修改說明,并且這些內(nèi)容最終包含在數(shù)據(jù)采集里(如圖4.1.9)。
智能模擬方法正在一定程度上取代著這一進程,通過智能模擬,已成形件的潛在缺陷可以在電腦顯示其綜合預測和分析。
圖4.1.8 CAD對制圖計劃的數(shù)字分析
圖4.1.9 CAD制圖計劃實體分析模型
模具設計
工藝方案、制圖計劃以及沖壓力設定好后,就可以開始模具的設計了。一般規(guī)定,在這個階段,必須考慮客戶要求的標準和制造規(guī)格。因此,可能獲得一個統(tǒng)一的模具設計標準,并可能考慮客戶關于存放標準、更換和易磨損部件的特殊要求。許多模具需要通過設計來使他們可以安裝在不同類型的壓力機。
模具往往即可以安裝在一臺壓力機上,也可以安裝在兩個不同的獨立的后勤壓力機上。在這種情況下,必須考慮模具鎖模部分,壓腳及廢料板在不同壓力機上的分布情況。此外,必須指出,拉絲模在單動壓力機的工作時可能會在雙動壓力機上安裝(對比章節(jié)3.1.3和圖4.1.16)。
在模具的設計和其尺寸的確定階段,考慮夾鉗和橫木轉移部件的運動的靈活性尤為重要(參考章節(jié)4.1.6)。這些描述了,在一個完整的工作行程中,壓力傳輸系統(tǒng)組件和模具零部件之間的相對運動。壓力機滑行裝置的上行、夾鉗軌的打開和閉合運動以及整個傳輸系統(tǒng)的縱向運動都是有條不紊的進行的。模具通過設計來避免發(fā)生碰撞,并且所有運動部件之間設置最小約20毫米的間隙。
20